다공성 탄소계 재료를 이용한 수소저장 기술

Hydrogen Storage Technology by Using Porous Carbon Materials

  • 이영석 (충남대학교 정밀응용화학과) ;
  • 임지선 (충남대학교 정밀응용화학과)
  • Lee, Young Seak (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University) ;
  • Im, Ji Sun (Department of Fine Chemical Engineering Applied Chemistry, Chungnam National University)
  • 투고 : 2009.07.17
  • 발행 : 2009.10.10

초록

본 총설에서는 최근 주로 연구되고 있는 활성탄, 탄소나노튜브, 팽창 흑연 및 활성 탄소 섬유 등 다공성 탄소재료를 중심으로 수소 저장량을 증대시키기 위한 기술 및 기 발표된 수소저장량과 그 장 단점에 대하여 고찰하였다. 수소저장능을 향상시키기 위한 탄소 내 기공의 최적의 크기는 0.6~0.7 nm로 조사되었다. 촉매의 경우 전이금속 및 그 금속산화물이 많이 이용되었으며, 주로 다공성 탄소재료에 도핑을 통해 수소저장능을 향상시켰다. 수소저장 매체인 다공성 탄소재료 중에서 활성탄은 대량생산이 가능하여 가격이 비교적 저렴한 장점이 있고 탄소나노튜브는 튜브의 튜브간 공간 외에도 내부공간에 수소를 저장할 수 있는 공간이 수소저장에 활용될 수 있다는 장점이 있다. 팽창 흑연은 흑연의 층 사이에 알칼리 금속의 삽입 시 층간 거리가 팽창하여 수소저장에 용이하고, 활성탄소섬유는 높은 비표면적과 발달된 미세기공이 수소흡착에 크게 기여한다는 점이 있다. 이러한 기존의 연구로 고려해 볼 때 다공성 탄소재료는 아직 달성되지 못한 DOE의 수소저장 목표치에 도달하기 위한 주요 유망한 후보재료 중의 하나이다.

The technologies for improving the capacity of hydrogen storage were investigated and the recent data of hydrogen storage by using various porous carbon materials were summarized. As the media of hydrogen storage, activated carbon, carbon nanotube, expanded graphite and activated carbon fiber were mainly investigated. The hydrogen storage in the carbon materials increased with controlled pore size about 0.6~0.7 nm. In case of catalyst, transition metal and their metal oxide were mainly applied on the surface of carbon materials by doping. Activated carbon is relatively cheap because of its production on a large scale. Carbon nanotube has a space inside and outside of tube for hydrogen storage. In case of graphite, the distance between layers can be extended by intercalation of alkali metals providing the space for hydrogen adsorption. Activated carbon fiber has the high specific surface area and micro pore volume which are useful for hydrogen storage. Above consideration of research, porous carbon materials still can be one of the promising materials for reaching the DOE target of hydrogen storage.

키워드

참고문헌

  1. A. Bouza, C. J. Read, S. Satyapal, and J. Milliken, DOE Hydrogen Program, FY, Program Rev. (2004)
  2. J. W. Kim, Hydrogen storage, ed. G. B. Kim, 1, 223, Seoul (2005)
  3. J. S. Im, S. J. Park, T. J. Kim, Y. H. Kim, and Y. S Lee, J. Colloid Interf. Sci., 318, 42 (2008) https://doi.org/10.1016/j.jcis.2007.10.024
  4. Y. Gogotsi, C. Portet, S. Osswald, J. M. Simmons, T. Yildirim, G. Laudisio, and J. E. Fischer, Int. J. Hydrogen Energy, In Press (2009)
  5. L. Zubizarreta, J. A. Menéndez, J. J. Pis, and A. Arenillas, Int. J. Hydrogen Energy, 34, 3070 (2009) https://doi.org/10.1016/j.ijhydene.2009.01.040
  6. J. S. Im, S. J. Park, T. J. Kim, and Y. S. Lee, Int. J. Hydrogen Energy, 34, 3382 (2009) https://doi.org/10.1016/j.ijhydene.2009.02.047
  7. C. H. Chen and C. C. Huang, Int. J. Hydrogen Energy, 32, 237 (2007) https://doi.org/10.1016/j.ijhydene.2006.03.010
  8. M. Kunowskya, B. Weinbergerb, F. L. Darkrimb, F. S. Garcı'aa, D. C. Amoro'sa, and A. L. Solanoa, Int. J. Hydrogen Energy, 33, 3091 (2008) https://doi.org/10.1016/j.ijhydene.2008.01.036
  9. M. Jorda-Beneyto, F. Suarez-GarcıLa, D. Lozano-Castello, D. Cazorla-Amoros, and A. Linares-Solano, Int. J. Hydrogen Energy, 45, 293 (2007)
  10. W. C. Xua, K. Takahashia, Y. Matsuoa, Y. Hattoria, M. Kumagaia, S. Ishiyamab, K. Kanekoc, and S. Iijimad, Int. J. Hydrogen Energy, 32, 2504 (2007) https://doi.org/10.1016/j.ijhydene.2006.11.012
  11. H. Y. Tiana, C. E. Buckleya, S. B. Wangc, and M. F. Zhoud, Carbon, 47, 2112 (2009) https://doi.org/10.1016/j.carbon.2009.02.027
  12. P. A. Georgiev, D. K. Ross, P. Albers, and A. J. Ramirez-Cuesta, Carbon, 44, 2724 (2006) https://doi.org/10.1016/j.carbon.2006.04.023
  13. L. Schlapbach and A. Zuttel, Nature, 414, 353 (2001) https://doi.org/10.1038/35104634
  14. M. Shiraishi, T. Takenobu, H. Kataura, and M. Ata, Appl. Phys. A, 78, 947 (2004)
  15. Y. Li, D. Zhao, Y. Wanga, R. Xue, Z. Shen, and X. Li, Int. J. Hydrogen Energy, 32, 2513 (2006) https://doi.org/10.1016/j.ijhydene.2006.11.010
  16. P. A. Gordon and R. B. Saeger, Ind. Eng. Chem. Res., 38, 4647 (1999) https://doi.org/10.1021/ie990503h
  17. R. H. Bauqhman, A. A. Zakhidov, and W. A. Heer, Science, 297, 787 (2002) https://doi.org/10.1126/science.1060928
  18. P. Chen, Z. T. Xiong, J. Z. Luo, J. Y. Lin, and K. L. Tan, Nature, 420, 302 (2002) https://doi.org/10.1038/nature01210
  19. H. K. Jin, Y. S. Lee, and L. P. Hong, Catal. Today, 120, 399 (2007) https://doi.org/10.1016/j.cattod.2006.09.012
  20. C. Liu, Q. H. Yang, Y. Tong, H. T. Cong, and H. M. Cheng, Appl. Phys. Letter, 80, 2389 (2002) https://doi.org/10.1063/1.1466517
  21. M. R. Smith, E. W. Bittner, W. Shi, J. K. Johnson, and B. C. Bockrath, J. Phys. Chem. B, 107, 3752 (2003) https://doi.org/10.1021/jp027631v
  22. M. Hirscher, M. Becher, M. Haluska, U. Detlaff-Weglikowska, A. Quintel, G. S. Duesberg, Y. M. Coi, P. Downes, M. Hulman, S. Roth, I. Stepanek, and P. Bernier, Appl. Phys. A, 72, 129 (2001) https://doi.org/10.1007/s003390100816
  23. M. Hirscher, M. Becher, M. Haluska, A. Quintel, V. Skakalova, Y. M. Coi, U. Detlaff-Weglikowska, S. Roth, I. Stepanek, P. Bernier, A. Leonhardt, and J. Fink, J. Alloys Compd., 654, 330 (2001)
  24. M. Ritschel, M. Uhlemann, O. Gutfleisch, A. Leonhardt, A. Graff, C. Taschner, and J. Fink, Appl. Phys. Letter, 80, 2985 (2002) https://doi.org/10.1063/1.1469680
  25. R. G. Ding, G. Q. Lu, and Z. F. Lan, unpublished results (2003)
  26. B. K. Pradhan, A. Harutyunyan, D. Stojkovic, P. Zhang, M. W. Cole, V. Crespi, H. Goto, J. Fujiwara, and P. C. Eklund, Mater. Res. Soc. Symp. Proc., 706, 331 (2002)
  27. H. Zhu, A. Cao, X. Li, C. Xu, Z. Mao, D. Ruan, J. Liang, and D. Wu, Appl. Surf. Sci., 178, 50 (2001) https://doi.org/10.1016/S0169-4332(01)00309-9
  28. A. Cao, H. Zhu, X. Zhang, X. Li, D. Ruan, C. Xu, B. Wei, L. Liang, and D. Wu, Chem. Phys. Letter, 342, 510 (2001) https://doi.org/10.1016/S0009-2614(01)00619-4
  29. A. Badzian, T. Badzian, E. Breval, and A. Piotrowski, Thin SolidFilms, 170, 398 (2001)
  30. N. Nishimiya, H. Ishigaki, H. Takikawa, M. Ikeda, Y. Hibi, T. Sakakibara, A. Matsumoto, and K. Tsutsumi, J. Alloys Compd., 339, 275 (2002) https://doi.org/10.1016/S0925-8388(01)02007-2
  31. S. Rather, M. Naik, S. W. Hwang, A. R. Kim, and K. S. Nahm, J. Alloys Compd., 475, L17 (2009) https://doi.org/10.1016/j.jallcom.2008.07.133
  32. S. Rather, M. Naik, R. Zacharia, S. W. Hwang, A. R. Kim, and K. S. Nahm, Int. J. Hydrogen Energy, 34, 961 (2009) https://doi.org/10.1016/j.ijhydene.2008.09.089
  33. C. H. Chen and C. C. Huang, Int. J. Hydrogen Energy, 32, 237 (2007) https://doi.org/10.1016/j.ijhydene.2006.03.010
  34. R. B. Rakhi, K. Sethupathi, and S. Ramaprabhu, Int. J. Hydrogen Energy, 33, 381 (2008) https://doi.org/10.1016/j.ijhydene.2007.07.037
  35. S. Mu, H. Tang, S. Qian, M. Pan, and R. Yuan, Carbon, 44, 762 (2006) https://doi.org/10.1016/j.carbon.2005.09.010
  36. A. L. M. Reddy and S. Ramaprabhu, Int. J. Hydrogen Energy, 32, 3998 (2007) https://doi.org/10.1016/j.ijhydene.2007.04.048
  37. K. A. Willianms and P. E. Eklund, Chem. Phys. Letter, 320, 352 (2000) https://doi.org/10.1016/S0009-2614(00)00225-6
  38. C. H. Chen and C. C. Huang, Sep. Purif. Technol., 65, 305 (2009) https://doi.org/10.1016/j.seppur.2008.10.048
  39. R. Str\ddot{o}bel, J. Garche, P. T. Moseley, L. J\ddot{o}rissen, and G. Wolf, J. Power Sourc., 159, 781 (2006) https://doi.org/10.1016/j.jpowsour.2006.03.047
  40. C. C. Ahn, J. J. Vajo, R. Yazami, D. W. Brown, and R. C. Bowman, DOE Hydrogen Program, FY, Progress Report (2002)
  41. T. Enoki, M. Suzuki, and M. Endo, Oxford University Press, Oxford (2003)
  42. T. Yildirim and S. Ciraci, Phys. Rev. Letter, 94, 175501 (2005) https://doi.org/10.1103/PhysRevLett.94.175501
  43. T. Yildirim, J. Iniguez, and S. Ciraci, Phys. Rev. B, 72, 153403 (2005)
  44. A. C. Dillon, P. A. Parilla, T. Gennet, K. E. H. Gilbert, J. L. Blackburn, Y. H. Kim, Y. Zhao, S. B. Zhang, J. L. Alleman, K. M. Jones, T. McDonald, and M. Heben, DOE Hydrogen Program, FY, Progress Report (2004)
  45. B. K. Gupta and O. N. Srivastava, Int. J. Hydrogen Energy, 25, 825 (2000) https://doi.org/10.1016/S0360-3199(99)00104-4
  46. C. Zhang, X. Lu, and A. Gu, Int. J. Hydrogen Energy, 29, 1271 (2004) https://doi.org/10.1016/j.ijhydene.2003.12.001
  47. H. M. Cheng, C. Liu, Y. Y. Fan, F. Li, G. Su, and H. T. Cong, Zeitschrift fur Metallkunde, 91, 306 (2000)
  48. Y. F. Yin, T. Mays, and B. McEnaney, Langmuir, 16, 10521 (2000) https://doi.org/10.1021/la000900t
  49. N. Rodriguez, MRS Fall Meeting, 6, D11, Boston (1996)
  50. D. J. Browning, M. L. Gerrard, J. B. Laakeman, I. M. Mellor, R. J. Mortimer, and M. C. Turpin, Proc. 13th World Hydrogen Energy Confer., eds. Z. Q. Mao and T. N. Veziroglu, 580, Beijing,China (2000)
  51. B. K. Gupta, K. Awasthi, and O. N. Srivastava, Proc. 13th World Hydrogen Energy Confer., eds. Z. Q. Mao and T. N. Veziroglu, 487, Beijing, China (2000)
  52. L. Schlappach and A. Zuettel, Nature, 414, 353 (2001) https://doi.org/10.1038/35104634
  53. C. W. Huang, H. C. Wu, and Y. Y. Li, Separation and Purification Tech., 58, 219 (2007) https://doi.org/10.1016/j.seppur.2007.07.032
  54. S. Isobe, T. Ichikawa, J. I. Gottwald, E. Gomibuchi, and H. Fujii, J. Phys. Chem. Solids, 65, 535 (2004) https://doi.org/10.1016/j.jpcs.2003.08.039
  55. B. J. Kim, Y. S. Lee, and S. J. Park, J. Colloid Interface Sci., 318, 530 (2008) https://doi.org/10.1016/j.jcis.2007.10.018
  56. F. Salvador, M. J. S\acute{a}nchez-Montero, J. Montero, and C. Izquierdo, J. Power Sourc., 190, 331 (2009) https://doi.org/10.1016/j.jpowsour.2009.01.024
  57. W. Z. Hong, S. L. Xue, J. C. Li, L. X. Cai, H. W. De, and Q. M. Zong, Mater. Chem. Phys, 78, 670 (2003) https://doi.org/10.1016/S0254-0584(02)00233-X
  58. W. Z. Hong, H. L. Chun, S. L. Xue, L. X. Cai, Q. M. Zong, L. Ji, and H. W. De, Mater. Lett., 57, 32 (2002) https://doi.org/10.1016/S0167-577X(02)00694-8
  59. J. M. Blackman, J. W. Patrick, A. Arenillas, W. Shi, and C. E. Snape, Carbon, 44, 1376 (2006) https://doi.org/10.1016/j.carbon.2005.11.015
  60. J. S. Im, S. J. Park, and Y. S. Lee, Mater Res Bull, In Press (2009)
  61. J. S. Im, S. J. Park, and Y. S. Lee, Int. J. Hydrogen Energy, 34, 1423 (2009) https://doi.org/10.1016/j.ijhydene.2008.11.054