Optimum Culture Conditions for the Growth of Spirulina platensis NIES 39

Spirulina platensis NIES 39의 성장을 위한 최적배양조건

  • Kim, Young Min (Department of Bioscience and Biotechnology, Colleage of Engineering, Silla University) ;
  • Kim, Mi-Ryung (Department of Bio-Food Materials, Colleage of Medical Life Science, Silla University) ;
  • Kwon, Tae Ho (Jeonju Biomaterials Institute) ;
  • Ha, Jong-Myung (Department of Bioscience and Biotechnology, Colleage of Engineering, Silla University) ;
  • Lee, Jae-Hwa (Department of Bioscience and Biotechnology, Colleage of Engineering, Silla University)
  • 김영민 (신라대학교 공과대학 생명공학과) ;
  • 김미령 (신라대학교 의생명과학대학 바이오식품소재공학과) ;
  • 권태호 (전주생물소재연구소) ;
  • 하종명 (신라대학교 공과대학 생명공학과) ;
  • 이재화 (신라대학교 공과대학 생명공학과)
  • Received : 2009.02.12
  • Accepted : 2009.03.10
  • Published : 2009.06.10

Abstract

Recently, as the interest in the accelerated global warming and the food shortage problem is increased, the concerns for microalgae as photosynthetic microorganisms are also increased. Specially, photosynthetic microalgae, Spriulina platensis have been an attractive source for $CO_2$ gas fixations and for a vast array of valuable nutritious compounds. In this paper, to culture the microalgal Spirulina platensis NIES 39 in a batch culture with high mass, optimal conditions for the culture temperature, initial pH, light intensity and concentration of carbon and nitrogen, were tested. At the most favorable culture condition, $35^{\circ}C$, initial pH 9.5, 4500 lux and carbon and nitrogen concentration of 16.8 g/L $NaHCO_3$ and 2.5 g/L $NaNO_3$, the excellent yields of 2.10 g/L biomass and 29.53 mg/L chlorophyll were obtained.

최근 지구온난화 및 식량문제에 대한 관심이 증대되면서 그 해결책으로 미세조류에 대한 많은 연구가 이루어지고 있다. 특히 광합성 미세조류 Spirulina platensis는 이산화탄소를 고정할 수 있으며, 영양적 가치가 우수하여 많은 관심을 받고 있다. 본 연구에서는 Spirulina platensis NIES 39의 대량 배양을 위한, 배양온도, 초기 pH, 조도, 탄소와 질소원의 농도 등의 요인에 대한 최적 조건을 확립하고자 하였다. 배양 온도 $35^{\circ}C$에서 초기 pH 9.5, 조도 4500 lux에서 건조균체중량 2.10 g/L, 클로로필 함량 29.53 mg/L로 가장 우수한 결과를 나타내었으며, 이때의 탄소원과 질소원의 농도는 각각 16.8 g/L $NaHCO_3$, 2.5 g/L $NaNO_3$이었다.

Keywords

Acknowledgement

Supported by : 지식경제부

References

  1. S. H. Schmeider, Science, 243, 771 (1989) https://doi.org/10.1126/science.243.4892.771
  2. L. Binaghi, A. D. Borghi, A. Lodi, A. Converti, and M. D. Borghi, Proc. Biochem., 38, 1241 (2003)
  3. T. Karube, T. Takeuchi, and D. J. Barnes, Adv. Biochem. Eng. Biotechnol., 46, 63 (1992) https://doi.org/10.1007/BFb0000705
  4. D. O. hall and J. I. House, Energy Convers. Manag., 34, 889 (1993) https://doi.org/10.1016/0196-8904(93)90033-7
  5. J. Carlos, R. C. Belen, L. Diego, and N. Xavier, Aquaculture, 217, 179 (2003) https://doi.org/10.1016/S0044-8486(02)00118-7
  6. J. Carlos, R. C. Belen, and N. Xavier, Aquaculture, 221, 331 (2003) https://doi.org/10.1016/S0044-8486(03)00123-6
  7. H. M. Oh, J. S. Kim, and S. J. Lee, Kor. J. of Environ. Biol., 16, 291 (1998)
  8. T. H. Kim, K. D. Sung, J. S. Lee, J. Y. Lee, S. J. Oh, and H. Y. Lee, Kor. J. Appl. Microbiol. Biotechnol., 25, 235 (1997)
  9. A. V. C. Jorge, A. L. Giani, I. P. A. Daniel, M. M. Guilherme, and T. K. Roselini, World J. Microbial. Biotechnol., 16, 15 (2000) https://doi.org/10.1023/A:1008992826344
  10. M. Tredici, G. C. Zitelli, S. Biagiolini, and R. Materassi, Bull. Inst Oceanogr., 12, 89 (1993)
  11. S. M. Jeon, I. H. Kim, J. M. Ha, and J. H. Lee, J. Korean Ind. Eng. Chem., 19, 145 (2008)
  12. D. S. Joo, M. G. Cho, R. Buchholz, and E. H Lee, J. Korean Fish. Soc., 31, 409 (1998)
  13. D. S. Joo, C. K. Jung, C. H. Lee, and S. Y. Cho, J. Korean Fish. Soc., 33, 475 (2000)
  14. Y. S. Kim, H. I. Park, D. k. Kim, and D. W. Park, Korean J. Biotechnol. Bioeng., 18, 277 (2003)
  15. C. O. Rangel-Yagui, E. D. G. Danesi, J. C. M. Carvalho, and S. Sato, Bioresour. Technol., 92, 133 (2004) https://doi.org/10.1016/j.biortech.2003.09.002
  16. R. Rippka, J. Deruelles, J. B. Waterbury, M. Herdman, and P. G. Roughan, J. Sci. Food Agric., 47, 295 (1989)
  17. S. C. Babu and B. Rajasekaran, Food Policy, 9, 405 (1991)
  18. E. W. Becker and L. V. Vanattaraman, Biomass, 4, 105 (1984) https://doi.org/10.1016/0144-4565(84)90060-X
  19. O. Ciferri, Microbiol. Rev., 47, 551 (1983)
  20. L. M. Mosulishvili, E. I. Kirkesali, A. I. Belokobylsky, A. I. Khizanishvili, M. V. Frontasyeva, S. S. Pavlov, and S. F. Gundorina, J. Pharm. Biomed. Anal., 30, 87 (2002) https://doi.org/10.1016/S0731-7085(02)00199-1
  21. J. Lu, G. Yoshizaki, K. Sakai, and T. Takeuchi, Fish. Sci., 68, 51 (2002) https://doi.org/10.1046/j.1444-2906.2002.00388.x
  22. A. Vonshak, Biotechnol. Adv., 8, 709 (1990) https://doi.org/10.1016/0734-9750(90)91993-Q
  23. T. Ogawa and G. Terui, J. Ferment. Technol., 48, 361 (1970)
  24. F. B. Susana, T. Nishijima, Y. Hata, and K. Fukami, Nippon Suisan Gakk., 57, 645 (1991) https://doi.org/10.2331/suisan.57.645
  25. C. Tianfeng, Y. S. Wong, and W. Zheng, Phytochemistry, 67, 2424 (2006) https://doi.org/10.1016/j.phytochem.2006.08.004
  26. L. H. Pelizer, E. D. G. Danesi, C. O. Rangel, C. E. N. Sassano, J. C. M. Carvalho, S. Sato, and I. O. Moraes, J. Food Eng., 56, 371 (2003) https://doi.org/10.1016/S0260-8774(02)00209-1
  27. P. C. Chen, Ph. D. Dissertation, G$\ddot{o}$ttingen Univ., Germany (1979)
  28. K. H. Ogbonda, R. E. Aminigo, and G. O. Abu, Bioresour. Technol., 98, 2207 (2007) https://doi.org/10.1016/j.biortech.2006.08.028
  29. C. Gudin and D. Chaumont, Biochem. Soc. Trans., 8, 481 (1980) https://doi.org/10.1042/bst0080481
  30. Korea Patent 0622025 (2006)