Efficiency Variation of Dye-Sensitized Solar Cell Influenced by Phosphor Additives

형광체 첨가에 따른 염료감응형 태양전지의 효율 변화

  • Received : 2009.03.09
  • Accepted : 2009.03.24
  • Published : 2009.04.10

Abstract

Recently, dye-sensitized solar cell (DSSC), one of the solar cells, has been widely investigated. Studies on DSSCs can be classified into 4 fields such as $TiO_2$ nanocrystalline materials, dyes, electrolytes and conductive plate. In this work, $TiO_2$ nanoparticles for dye adsorption were synthesized, and added into the photo-electrode paste with different phosphor types and contents. Then, the influence of phosphor additives on the conversion efficiency of DSSCs was investigated. It was found that the maximum conversion efficiency was 8.81% when 0.5% of YAG phospher having the particle size of 400 nm was used.

최근 태양전지에 대한 관심이 급증하면서 염료감응형 태양전지(Dye-Sensitized Solar Cell, DSSC)에 관한 연구가 활발히 진행되고 있다. 염료감응형 태양전지에 관한 연구는 크게 $TiO_2$ 나노 결정 소재, 염료, 전해질 및 전도성 기판 등 4가지 분야로 나눌 수 있다. 본 연구에서는 염료를 흡착할 수 있는 나노결정성 $TiO_2$를 합성한 후, 이를 광전극용 페이스트(paste)에 다양한 형광물질(phosphor)의 종류 및 함량을 조절하여 첨가함으로써 염료감응형 태양전지의 효율에 미치는 영향을 조사하였다. 실험결과 400 nm 입자크기의 YAG계 형광체 0.5%가 첨가된 페이스트를 사용할 경우, 에너지 변환효율이 최대 8.31%에 도달함을 확인할 수 있었다.

Keywords

Acknowledgement

Supported by : 교육과학기술부, 한국산업 기술재단

References

  1. B. O'Regan and M. Gr\ddot{a}tzel, Nature, 353, 737 (1991) https://doi.org/10.1038/353737a0
  2. M. Gr\ddot{a}tzel, Nature, 414, 338 (2001) https://doi.org/10.1038/35104607
  3. K. Hara, Y. Tachibana, Y. Ohga, A. Shinpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, Solar Energy materials and Solar cells, 77, 89 (2003) https://doi.org/10.1016/S0927-0248(02)00460-9
  4. F. L. Qiu, A. C. Fisher, and A. B. Walker, Electro chemistry Communications, 5, 711 (2003) https://doi.org/10.1016/S1388-2481(03)00165-6
  5. P. Wang, S. M. Zakeerruddin, J. E. Moser, M. K. Nazeeruddin, T. Sekiguchi, and M. Gratzel, Nature Materials, 2, 402 (2003) https://doi.org/10.1038/nmat904
  6. C. J. Barbe, F. Arendse, P. Comte, V. Shiklover, and M. Gratzel, J. Am. Ceram. Soc., 80, 3157 (1997) https://doi.org/10.1111/j.1151-2916.1997.tb03245.x
  7. N. G. Park, J. A. Mascarenhas, and A. J. Frank, J. Phys. Chem. B, 103, 3308 (1999) https://doi.org/10.1021/jp984529i
  8. K. Hara, T. Sato, R. Katoh, A Furube, Y. Ohga, A. Simpo, S. Suga, K. Sayama, H. Sugihara, and H. Arakawa, J. Phys. Chem. B., 107, 597 (2003) https://doi.org/10.1021/jp026963x
  9. A. Hinsch, J. M. Kroon, R. Kern, I. Uhlendorf, J. Holzlock, A Meyer, and J. Ferber, Prog. Photovolt: Res. Appl., 9, 425 (2001) https://doi.org/10.1002/pip.397
  10. A. Shah, P. Torres, R. Tschamer, N. Wyrsch, and H. Keppner, Science, 285, 692 (1999) https://doi.org/10.1126/science.285.5428.692
  11. K. Kalyanasundaran and M. Gr$\ddot{a}$tzel, Coordination Chemistry Reviews, 77, 347 (1999)
  12. M. Gr\ddot{a}tzel, J. Photochem. Photobiol., 4, 145 (2003) https://doi.org/10.1016/S1389-5567(03)00026-1
  13. N. G. Park, Dye-Sensitized Solar Cell, J. Korean Ind. Eng. Chem., 15, 265 (2004)