Thermodynamic Analysis of DME Steam Reforming for Hydrogen Production

수소제조를 위한 DME 수증기 개질반응의 열역학적 특성

  • Park, Chan-Hyun (Department of Chemical Engineering, Dankook University) ;
  • Kim, Kyoung-Suk (Department of Chemical Engineering, Dankook University) ;
  • Jun, Jin-Woo (Department of Chemical Engineering, Dankook University) ;
  • Cho, Sung-Yul (Department of Chemical Engineering, Dankook University) ;
  • Lee, Yong-Kul (Department of Chemical Engineering, Dankook University)
  • Received : 2009.01.10
  • Accepted : 2009.02.10
  • Published : 2009.04.10

Abstract

This study is purposed to analyze thermodynamic properties on the hydrogen production by dimethyl ether steam reforming. Various reaction conditions of temperatures (300~1500 K), feed compositions (steam/carbon = 1~7), and pressures (1, 5, 10 atm) were applied to investigate the effects of the reaction conditions on the thermodynamic properties of dimethyl ether steam reforming. An endothermic steam reforming competed with an exothermic water gas shift reaction and an exothermic methanation within the applied reaction condition. Hydrogen production was initiated at the temperature of 400 K and the production rate was promoted at temperatures exceeding 550 K. An increase of steam to carbon ratio (S/C) in feed mixture over 1.5 resulted in the increase of the water gas shift reaction, which lowered the formation of carbon monoxide. The maximum hydrogen yield with minimizing loss of thermodynamic conversion efficiency was achieved at the reaction conditions of a temperature of 900 K and a steam to carbon ratio of 3.0.

본 연구는 수소제조를 위한 디메틸에테르 수증기 개질반응에 대한 열역학적 특성 분석을 목적으로 한다. 이를 위하여 온도(300~1500 K), 반응물 조성비(Steam/Carbon ratio = 1~7), 압력(1, 5, 10 기압) 등의 다양한 반응조건을 변화시키면서 열역학적 평형조성 및 효율 등을 조사하였다. 주어진 조건하에서 흡열반응인 개질반응과 발열반응인 수성가스 전환반응 및 메탄화반응간 경쟁특성을 확인하였으며, 반응온도 400 K를 지나면서 수소발생이 관찰되어 550 K를 지나면서 급격한 발생량의 증가를 확인하였다. 반응물 가운데 수증기의 비율을 증가시킬 경우 수성가스 전환반응이 촉진되어 일산화탄소 저감 및 수소발생 증가 거동을 나타내었다. 결과적으로 열역학적 효율감소를 최소화 하면서 수소발생량을 극대화 할 수 있는 조건은 반응온도 900 K 및 수증기 대 탄소간 비율이 3.0 이내의 범위에 해당하는 것으로 판단된다.

Keywords

References

  1. A. Demirbas, Energy, Convers. Manage., 49, 2106 (2008) https://doi.org/10.1016/j.enconman.2008.02.020
  2. J. A. Torres, J. Llorca, A. Casanovas, M. Dom$\acute{i}$nguez, J. Salvad\acute{o}, and D. Montan\acute{e}; J. Power Sources, 169, 158 (2007) https://doi.org/10.1016/j.jpowsour.2007.01.057
  3. L. Huang, J. Xie, R. Chen, D. Chu, W. Chu, and A. T. Hsu, Int. J. Hydrogen Energy, 33, 7448 (2008) https://doi.org/10.1016/j.ijhydene.2008.09.062
  4. G. Rabenstein and V. Hacker, J. Power Sources, 185, 1293 (2008) https://doi.org/10.1016/j.jpowsour.2008.08.010
  5. K. Essaki, T. Muramatsu, and M. Kato, Int. J. Hydrogen Energy, 33, 6612 (2008) https://doi.org/10.1016/j.ijhydene.2008.08.025
  6. K. Faungnawakij, R. Kikuchi, and K. Eguchi, J. Power Sources, 164, 73 (2007) https://doi.org/10.1016/j.jpowsour.2006.09.072
  7. T. A. Semelsberger and R. L. Borup, J. Power Sources, 155, 340 (2006) https://doi.org/10.1016/j.jpowsour.2005.04.031
  8. K. Faungnawakij, Y. Tanaka, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, Appl. Catal., B, 74, 144 (2007) https://doi.org/10.1016/j.apcatb.2007.02.010
  9. K. Faungnawakij, N. Shimoda, T. Fukunaga, R. Kikuchi, and K. Eguchi, Appl. Catal., A, 341, 139 (2008) https://doi.org/10.1016/j.apcata.2008.02.039
  10. S. Adhikari, S. Fernando, S. R. Gwaltney, S. D. Filip To, R. M. Bricka, P. H. Steele, and A. Haryanto, Int. J. Hydrogen Energy, 32, 2875 (2007) https://doi.org/10.1016/j.ijhydene.2007.03.023
  11. C. C. R. S. Rossi, C. G. Alonso, O. A. C. Antunes, L. Cardozo- Filho, and R. Guirardello, Int. J. Hydrogen Energy, In Press
  12. A. Casanovas, M. Dom$\acute{i}$nguez, C. Ledesma, E. L$\acute{o}$pez, and J. Llorca, Catal. Today, In Press
  13. J. Rass-Hansen, R. Johansson, M. Møller, and C. H. Christensen, Int. J. Hydrogen Energy, 33, 4547 (2008) https://doi.org/10.1016/j.ijhydene.2008.06.020