DOI QR코드

DOI QR Code

Production of Cellulosic Ethanol in Saccharomyces cerevisiae Heterologous Expressing Clostridium thermocellum Endoglucanase and Saccharomycopsis fibuligera β-glucosidase Genes

  • Jeon, Eugene (School of Life Science and Biotechnology, Korea University) ;
  • Hyeon, Jeong-eun (School of Life Science and Biotechnology, Korea University) ;
  • Suh, Dong Jin (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Suh, Young-Woong (Clean Energy Research Center, Korea Institute of Science and Technology) ;
  • Kim, Seoung Wook (Department of Chemical Biological Engineering, Korea University) ;
  • Song, Kwang Ho (Department of Chemical Biological Engineering, Korea University) ;
  • Han, Sung Ok (School of Life Science and Biotechnology, Korea University)
  • Received : 2009.06.15
  • Accepted : 2009.08.17
  • Published : 2009.10.31

Abstract

Heterologous secretory expression of endoglucanase E (Clostridium thermocellum) and ${\beta}$-glucosidase 1 (Saccharomycopsis fibuligera) was achieved in Saccharomyces cerevisiae fermentation cultures as an ${\alpha}$-mating factor signal peptide fusion, based on the native enzyme coding sequence. Ethanol production depends on simultaneous saccharification of cellulose to glucose and fermentation of glucose to ethanol by a recombinant yeast strain as a microbial biocatalyst. Recombinant yeast strain expressing endoglucanase and ${\beta}$-glucosidase was able to produce ethanol from ${\beta}$-glucan, CMC and acid swollen cellulose. This indicates that the resultant yeast strain of this study acts efficiently as a whole cell biocatalyst.

Keywords

Acknowledgement

Supported by : Korea Science and Tngineering Foundation, National Research Foundation of Korea

References

  1. Abdeev, R.M., Goldenkova, I.V., Musiychuk, K.A., and Piruzian, E.S. (2001). Exploring the properties of thermostable Clostridium thermocellum cellulase CelE for the purpose of its expression in plants. Biochemistry 66, 808-813
  2. Arikan, B., Unaldi, M.N., Guvenmez, H., and Coral, G. (2002). Some Properties of Crude Carboxymethyl Cellulase of Aspergillus niger Z10 wild-Type Strain. Turk. J. Biol. 26, 209-213
  3. Benitez, J., Silva, A., Vazquez, R., Noa, M.D., and Hollenberg, C.P. (1989). Secretion and glycosylation of Clostridium thermocellum endoglucanase A encoded by the celA gene in Saccharomyces cerevisiae. Yeast 5, 299-306 https://doi.org/10.1002/yea.320050410
  4. Bradford, M.M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254 https://doi.org/10.1016/0003-2697(76)90527-3
  5. Cho, K.M., and Yoo, Y.J. (1999). Novel SSF process form ethanol production from microcrystalline cellulose using the δ-integrated recombinant yeast, L2612δGC. J. Microbiol. Biotechnol. 9, 340-345
  6. Den Haan, R., Rose, S.H., Lynd, L.R., and van Zyl, W.H. (2007). Hydrolysis and fermentation of amorphous cellulose by recombinant Saccharomyces cerevisiae. Metab. Eng. 9, 87-94 https://doi.org/10.1016/j.ymben.2006.08.005
  7. Fujita, Y., Takahashi, S., Ueda, M., Tanaka, A., Okada, H., Morikawa, Y., Kawaguchi, T., Arai, M., Fukuda, H., and Kondo, A. (2002). Direct and efficient production of ethanol from cellulosic material with a yeast strain displaying cellulolytic enzymes. Appl. Environ. Microbiol. 68, 5136-5141 https://doi.org/10.1128/AEM.68.10.5136-5141.2002
  8. Guedon, E., Desvaux, M., and Petitdemange, H. (2002). Improvement of cellulolytic properties of Clostridium cellulolyticum by metabolic engineering. Appl. Environ. Microbiol. 68, 53-58 https://doi.org/10.1128/AEM.68.1.53-58.2002
  9. Hahn-Hagerdal, B., Wahlbom, C.F., Gardonyi, M., van Zyl, W.H., Cordero Otero, R.R., and Jonsson, L.J. (2001). Metabolic engineering of Saccharomyces cerevisiae for xylose utilization. Adv. Biochem. Eng. Biotechnol. 73, 53-84
  10. Hall, J., Hazlewood, G.P., Barker, P.J., and Gilbert, H.J. (1988). Conserved reiterated domains in Clostridium thermocellum endoglucanases are not essential for catalytic activity. Gene 69, 29-38 https://doi.org/10.1016/0378-1119(88)90375-7
  11. Islam, R., Cicek, N., Sparling, R., and Levin, D. (2008). Influence of initial cellulose concentration on the carbon flow distribution during batch fermentation by Clostridium thermocellum ATCC 27405. Appl. Microbiol. Biotechnol. 82, 141-148 https://doi.org/10.1007/s00253-008-1763-0
  12. Katahira, S., Mizuike, A., Fukuda, H., and Kondo, A. (2006). Ethanol fermentation from lignocellulosic hydrolysate by a recombinant xylose- and cellooligosaccharide-assimilating yeast strain. Appl. Microbiol. Biotechnol. 72, 1136-1143 https://doi.org/10.1007/s00253-006-0402-x
  13. Kotaka, A., Bando, H., Kaya, M., Kato-Murai, M., Kuroda, K., Sahara, H., Hata, Y., Kondo, A., and Ueda, M. (2008). Direct ethanol production from barley beta-glucan by sake yeast displaying Aspergillus oryzae beta-glucosidase and endoglucanase. J. Biosci. Bioeng. 105, 622-627 https://doi.org/10.1263/jbb.105.622
  14. Lee, J.H., Kim, K., Park, E.H., Ahn, K., and Lim, C.J. (2007). Expression, characterization and regulation of a Saccharomyces cerevisiae monothiol glutaredoxin (Grx6) gene in Schizosaccharomyces pombe. Mol. Cells 24, 316-322
  15. Lynd, L.R., and Grethlein, H.E. (1987). Hydrolysis of dilute acid pretreated mixed hardwood and purified microcrystalline cellulose by cell-free broth from Clostridium thermocellum. Biotechnol. Bioeng. 29, 92-100 https://doi.org/10.1002/bit.260290114
  16. Machida, M., Ohtsuki, I., Fukui, S., and Yamashita, I. (1988). Nucleotide sequences of Saccharomycopsis fibuligera genes for extracellular beta-glucosidases as expressed in Saccharomyces cerevisiae. Appl. Environ. Microbiol. 54, 3147-3155
  17. Murai, T., Ueda, M., Kawaguchi, T., Arai, M., and Tanaka, A. (1998). Assimilation of cellooligosaccharides by a cell surface-engineered yeast expressing beta-glucosidase and carboxymethylcellulase from Aspergillus aculeatus. Appl. Environ. Microbiol. 64, 4857- 4861
  18. Okada, H., Sekiya, T., Yokoyama, K., Tohda, H., Kumagai, H., and Morikawa, Y. (1998). Efficient secretion of Trichoderma reesei cellobiohydrolase II in Schizosaccharomyces pombe and characterization of its products. Appl. Microbiol. Biotechnol. 49, 301-308 https://doi.org/10.1007/s002530051173
  19. Patni, N.J., and Alexander, J.K. (1971). Utilization of glucose by Clostridium thermocellum: presence of glucokinase and other glycolytic enzymes in cell extracts. J. Bacteriol. 105, 220-225
  20. Sambrook, J., Fritsch, E.F., and Maniatis, T. (1989). A Laboratory Manual, 2nd ed., (Cold Spring Harbor, NY: Cold Spring Harbor Laboratory)
  21. Schwarz, W.H. (2001). The cellulosome and cellulose degradation by anaerobic bacteria. Appl. Microbiol. Biotechnol. 56, 634-649 https://doi.org/10.1007/s002530100710
  22. Schwarz, W.H., Bronnenmeier, K., Grabnitz, F., and Staudenbauer, W.L. (1987). Activity staining of cellulases in polyacrylamide gels containing mixed linkage $\beta$-glucans. Anal. Biochem. 164, 72-77 https://doi.org/10.1016/0003-2697(87)90369-1
  23. Stagoj, M.N., Comino, A., and Komel, R. (2006). A novel GAL recombinant yeast strain for enhanced protein production. Biomol. Eng. 23, 195-199 https://doi.org/10.1016/j.bioeng.2006.03.001
  24. Teeri, T.T. (1997). Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol. 15, 160-167 https://doi.org/10.1016/S0167-7799(97)01032-9
  25. Tokatlidis, K., Salamitou, S., Beguin, P., Dhurjati, P., and Aubert, J.P. (1991). Interaction of the duplicated segment carried by Clostridium thermocellum cellulases with cellulosome components. FEBS Lett. 291, 185-188 https://doi.org/10.1016/0014-5793(91)81279-H
  26. Van Maris, A.J., Abbott, D.A., Bellissimi, E., Van den Brink, J., Kuyper, M., Luttik, M.A., Wisselink, H.W., Scheffers, W.A., Van Dijken, J.P., and Pronk, J.T. (2006). Alcoholic fermentation of carbon sources in biomass hydrolysates by Saccharomyces cerevisiae: current status. Antonie Van Leeuwenhoek 90, 391-418 https://doi.org/10.1007/s10482-006-9085-7
  27. Van Rooyen, R., Hahn-Hagerdal, B., La Grange, D.C., and Van Zyl, W.H. (2005). Construction of cellobiose-growing and fermenting Saccharomyces cerevisiae strains. J. Biotechnol. 120, 284-295 https://doi.org/10.1016/j.jbiotec.2005.06.013
  28. Wood, B.E., and Ingram, L.O. (1992). Ethanol production from cellobiose, amorphous cellulose, and crystalline cellulose by recombinant Klebsiella oxytoca containing chromosomally integrated Zymomonas mobilis genes for ethanol production and plasmids expressing thermostable cellulase genes from Clostridium thermocellum. Appl. Environ. Microbiol. 58, 2103-
  29. Wood, T. M., and Bhat, K.M. (1988). Methods for measuring cellulase activities. Methods Enzymol. 160, 87-112 https://doi.org/10.1016/0076-6879(88)60109-1
  30. Zhou, S., and Ingram, L.O. (2001). Simultaneous saccharification and fermentation of amorphous cellulose to ethanol by recombinant Klebsiella oxytoca SZ21 without supplemental cellulase. Biotechnol. Lett. 23, 1455-1462 https://doi.org/10.1023/A:1011623509335

Cited by

  1. Engineering cellulolytic ability into bioprocessing organisms vol.87, pp.4, 2009, https://doi.org/10.1007/s00253-010-2660-x
  2. Engineered microbial systems for enhanced conversion of lignocellulosic biomass vol.21, pp.5, 2009, https://doi.org/10.1016/j.copbio.2010.05.008
  3. Simultaneous cell growth and ethanol production from cellulose by an engineered yeast consortium displaying a functional mini-cellulosome vol.10, pp.None, 2009, https://doi.org/10.1186/1475-2859-10-89
  4. A celluloytic complex from Clostridium cellulovorans consisting of mannanase B and endoglucanase E has synergistic effects on galactomannan degradation vol.90, pp.2, 2009, https://doi.org/10.1007/s00253-011-3108-7
  5. Next-generation cellulosic ethanol technologies and their contribution to a sustainable Africa vol.1, pp.2, 2009, https://doi.org/10.1098/rsfs.2010.0017
  6. Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations vol.7, pp.9, 2012, https://doi.org/10.1002/biot.201100335
  7. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae vol.32, pp.1, 2012, https://doi.org/10.3109/07388551.2010.539551
  8. The processive endoglucanase EngZ is active in crystalline cellulose degradation as a cellulosomal subunit of Clostridium cellulovorans vol.29, pp.3, 2009, https://doi.org/10.1016/j.nbt.2011.06.008
  9. Expression of a library of fungal β-glucosidases in Saccharomyces cerevisiae for the development of a biomass fermenting strain vol.95, pp.3, 2009, https://doi.org/10.1007/s00253-011-3788-z
  10. Genetic engineering of microorganisms for biodiesel production vol.4, pp.5, 2009, https://doi.org/10.4161/bioe.23114
  11. Synergism of fungal and bacterial cellulases and hemicellulases: a novel perspective for enhanced bio-ethanol production vol.37, pp.6, 2009, https://doi.org/10.1007/s10529-015-1779-3
  12. Development of cellobiose-degrading ability in Yarrowia lipolytica strain by overexpression of endogenous genes vol.8, pp.None, 2009, https://doi.org/10.1186/s13068-015-0289-9
  13. Coexpression of cellulases in Pichia pastoris as a self-processing protein fusion vol.5, pp.1, 2009, https://doi.org/10.1186/s13568-015-0170-z
  14. Catalytic properties, functional attributes and industrial applications of β-glucosidases vol.6, pp.1, 2016, https://doi.org/10.1007/s13205-015-0328-z
  15. Directed evolution of a fungal β-glucosidase in Saccharomyces cerevisiae vol.9, pp.None, 2016, https://doi.org/10.1186/s13068-016-0470-9
  16. Microbial processing of fruit and vegetable wastes into potential biocommodities: a review vol.38, pp.1, 2018, https://doi.org/10.1080/07388551.2017.1311295
  17. A review on commercial-scale high-value products that can be produced alongside cellulosic ethanol vol.12, pp.None, 2019, https://doi.org/10.1186/s13068-019-1529-1
  18. Rapid optimisation of cellulolytic enzymes ratios in Saccharomyces cerevisiae using in vitro SCRaMbLE vol.13, pp.None, 2009, https://doi.org/10.1186/s13068-020-01823-8