Bending Performance of Glulam Beams Reinforced with Carbon Fiber-Reinforced Plastics Bonded with Polyvinyl Acetate-Based Adhesive

초산비닐수지계 접착제를 사용한 탄소섬유강화플라스틱 복합집성재의 휨 성능

  • Park, Jun-Chul (Department of Wood Science & Engineering, College of Forest & Environmental Sciences, Kangwon National University) ;
  • Shin, Yoon-Jong (Shinsung basic materials) ;
  • Hong, Soon-Il (Department of Wood Science & Engineering, College of Forest & Environmental Sciences, Kangwon National University)
  • 박준철 (강원대학교 산림환경과학대학 임산공학과) ;
  • 신윤종 ((주)신성소재) ;
  • 홍순일 (강원대학교 산림환경과학대학 임산공학과)
  • Received : 2009.04.24
  • Accepted : 2009.06.12
  • Published : 2009.07.25

Abstract

This study was carried out to investigate the bending strength of the Larix glulam beams which were reinforced with CFRP (Carbon fiber reinforced plastic) of which the reinforcement ratios were 0.7% and 2.1% by volume. In the bending test, the rupture shape of the reinforced glulam shows that the reinforced glulam broke firstly in the lowest bottom layer on which tension was loaded, but did not in the upper part reinforced with the CFRP layer. The upper part of the reinforced layer kept strength and did not break when the reinforced glulam broke firstly at the bottom part of the reinforced layer, but broke secondly as loading was increased. In the glulam beams reinforced with CFRP of which the reinforcement ratio was 0.7% by volume, the bending strength of the reinforced beams was increased by 28% at the first break. When beams broke up to the upper part of the reinforced layer, the bending strength of the reinforced beams was increased by 55%, compared to those of control glulam beams. When the glulam beams were reinforced with CFRP of which the reinforcement ratio was 2.1% by volume, the bending strength of the reinforced beams was increased by 77%, compared to those of control glulam beams. The ratio of the height of calculated neutral axis using failure mode recommended by Romani and the height of actual neutral axis using strain gauge was 1.03 and agreed well.

본 연구에서는 체적비 0.7%, 2.1%의 탄소섬유강화플라스틱 강화 낙엽송 집성재 보를 제작하여 휨강도 성능을 평가하였다. 휨강도 시험 결과 복합집성재의 파괴형상은 인장응력부 최하층에서 1차 파괴가 일어났지만 탄소 섬유 보강층 상층부는 파괴되지 않았다. 인장응력부위에서 1차 파괴가 일어난 후에도 보강층 상층부는 강도를 유지하고 있어 계속 하중이 증가하면 보강층 상층부에서 2차 파괴가 일어났다. 탄소섬유강화플라스틱 복합집성재의 휨강도는 체적비 0.7%를 보강한 집성재의 경우 대조군 집성재(control 재)에 비해 1차 파괴시 휨강도는 28% 향상되었다. 보강층 상층까지 완전한 파괴가 일어났을 때의 휨강도는 55% 향상되었다. 탄소섬유강화플라스틱을 체적비의 2.1% 보강한 경우 대조군 집성재에 비해 휨강도가 77% 증가하였다. Romani가 제안한 파괴모드를 이용하여 산출된 탄소섬유강화플라스틱 복합집성재의 예측 중립축과 스트레인 게이지로 측정된 실측 중립축의 높이가 1.03으로 잘 일치하는 것을 확인할 수 있었다.

Keywords

References

  1. 김윤해, 한중원. 2001. 복합재료학. 효성출판사
  2. 박준철, 홍순일. 2008. 초산비닐수지계 접착제를 사용한 유리섬유강화플라스틱 복합집성재의 강도 성능 평가. 목재공학 36(4): 19∼25 https://doi.org/10.5658/WOOD.2008.36.4.019
  3. 이교성. 1989. 복합재료학. 광화문출판사
  4. 이대길, 정명영, 최진호, 전성식, 장승환, 오재훈. 2007. 복합재료. 홍릉과학출판사
  5. Dagher, H. J., T. E. grade eastern hemlock glulams. Res. Pap FPL-GTR-94. Madison, WI : U.S. Department of AgKimball, S. M. Shaler, and B. Abdel-Magid. 1996. Effect of FRP reinforcement on low riculture, Forest Service, Forest Products Laboratory. p. 207
  6. Gardner, D. J., J. F. Davalos, and U. M. Munipalle. 1994. Adhesive bonding of pultruded fiber-reinforced plastic to wood. Forest Products Journal 44(5): 62∼66
  7. Hernandez, R., J. F. Davalos, S. S. Sonti, Y. Kim, and R. C. Moody. 1997. Strength and stiffness of reinforced yellow-poplar glued-laminated beams. Res. Pap. FPL-RP-554. Madison, WI : U.S. Department of Agriculture, Forest Service, Forest Products Laboratory
  8. Lopez-Anido, R. and X. Han. 2002. Structrual characterization of hybrid fiber-reinforced- polymer-glulam panels for bridge decks. Journal of Composites for Construction. 6(3): 194∼203 https://doi.org/10.1061/(ASCE)1090-0268(2002)6:3(194)
  9. Romani, M. and H. J. Bla$\beta$. 2001. Design model for FRP reinforced glulam beams. Meeting thirty-four Venice Italy August 2001. 1∼10
  10. Svecova, D. and R. J. Eden. 2004. Flexural and Shear Strengthening of Timber Beams Using Glass Fiber Reinforced Polymer Bars-An Experimental Investigation. Canadian Journal of Engineering, 31(1): 45∼55 https://doi.org/10.1139/l03-069