Developing the Electrode Board for Bio Phase Change Template

바이오 상변화 Template 위한 전극기판 개발

  • 리학철 ((주)나노스토리지) ;
  • 윤중림 (서울대학교 나노응용시스템 국가핵심연구센터) ;
  • 이동복 (서울대학교 나노응용시스템 국가핵심연구센터) ;
  • 김수경 ((주)나노스토리지) ;
  • 김기범 (서울대학교 나노응용시스템 국가핵심연구센터) ;
  • 박영준 (서울대학교 나노응용시스템 국가핵심연구센터)
  • Received : 2009.07.29
  • Accepted : 2009.09.08
  • Published : 2009.12.31

Abstract

The phase change electrode board for the bio-information detection through electrical property response of phase change material was developed in this study. We manufactured the electrode board using Aluminum first that is widely used in conventional semiconductor device process. Without further treatment, these aluminum electrodes tend to contain voids in PETEOS(plasma enhanced tetraethyoxysilane) material that are easily detected by cross-sectional SEM(Scanning Electron Microscope). The voids can be easily attacked and transformed into holes in between PETEOS and electrodes after etch back and washing process. In order to resolve this issue of Al electrode board, we developed a electrode board manufacturing method using low resistivity TiN, which has advantages in terms of the step-coverage of phase change($Ge_2Sb_2Te_5$, GST) thin film as well as thermodynamic stability, without etch back and washing process. This TiN material serves as the top and bottom electrode in PRAM(Phase-change Random Access Memory). The good connection between the TiN electrode and GST thin film was confirmed by observing the cross-section of TiN electrode board using SEM. The resistances of amorphous and crystalline GST thin film on TiN electrodes were also measured, and 1000 times difference between the amorphous and crystalline resistance of GST thin film was obtained, which is well enough for the signal detection.

본 연구에서는 DNA 정보를 상변화 물질의 전기저항 변화특성으로 검출할 수 있는 상변화 전극 기판을 개발하였다. 이를 위해 반도체 공정에서 사용하는 Al을 사용하여 전극 기판을 제작하였다. 하지만 주사전자현미경을 이용하여 Al 전극의 단면 상태를 확인해 본 결과 PETEOS(plasma enhanced tetraethyoxysilane) 내에서 보이드(void)가 발생하여 후속공정인 에치백과 세정공정 분위기에 과도하게 노출되어 심하게 손상되어 전극과 PETEOS 사이에 홀(hole)로 변형된다. 이 문제점을 해결하기 위하여 에치백 및 세정 공정을 진행하지 않으면서 $Ge_2Sb_2Te_5$(GST) 박막의 단차피복성(stepcoverage)을 좋게 할 수 있고, 열역학적으로 GST 박막과의 반응성을 고려했을 때 안정적이면서 비저항이 낮은 TiN 재료를 사용하여 상변화 전극 기판을 제작하였다. 주사전자현미경을 통하여 전극의 단면의 상태를 관찰하였으며 TiN 전극과 GST 박막이 정상적으로 연결되어 있는 것을 확인하였다. 또한 저항측정 장비를 사용하여 TiN 상변화 전극 기판 위에 증착된 GST의 비정질과 결정질의 저항을 측정하였고, GST의 비정질과 결정질저항의 차이는 약 1,000배 정도로 신호를 검출하는데 충분함을 확인하였다.

Keywords

Acknowledgement

Supported by : 중소기업협력재단

References

  1. Liu, C., Ma, W., Shi, R., Ou, Y.-Q., Zhang, B. and Zheng, W.-L., 'Possibility of Using DNA Chip Technology for Diagnosis of Human Papillomavirus,' J. Biochem. Mol. Bio., 36, 349(2003) https://doi.org/10.5483/BMBRep.2003.36.4.349
  2. Kim, H.-L., 'Comparison of Oligonucleotide-microarray and Serial Analysis of Gene Expression(SAGE) in Transcript Profiling Analysis of Megakaryocytes Derived from $CK34^+$ Cells,' Exp. Mol. Med., 35, 460(2003) https://doi.org/10.1038/emm.2003.60
  3. Liu, N., Chen, G. and Hong, Z., "A 0.18 μm CMOS Fluorescent Detector System for Bio-sensing Application," J. Semi., 30, 015002-1(2009) https://doi.org/10.1088/1674-4926/30/1/015002
  4. Ardeshirpour, Y., Deen, M. J. and Shirani, S., 'Two-dimensional CMOS-based Image Sensor System for Fluorescent Detection,' Can J Elect Comput Eng, 29(4), (2004)
  5. Kim, K.-H., Lee, S.-Y., Kim, S. and Jeong, S.-G., "DNA Microarray Scanner with a DVD Pick-up Head," Current Applied Physics,8, 687-691(2008) https://doi.org/10.1016/j.cap.2007.04.047
  6. Fritzsche, W., Csaki, A. and Moller, R., 'Nanoparticle-Based Optical Detection of Molecular Interactions for DNA-Chip Technology,' Proceeding of SPIE, 4626, 17(2002)
  7. Hamilton, G., Brown, N. Oseroff, V., Huey, B., Segraves, R., Sudar, D., Kumler, J., Albertson, D. and Pinkel, D., "A Large Field CCD System for Quantitative Imaging of Microarrays," Nuc. Aci. Res., 34, e58(2006) https://doi.org/10.1093/nar/gkl160
  8. Park, K.-H., Lee, S.-Q., Kim, E.-K., Moon, S.-E., Cho, Y.-H., Gokarna, A., Jin, L.-H., Kim, S., Cho, W. and Lee, Y.-I., "Bio-information Scanning Technology Using an Optical Pick-up Head," Ultramicroscopy, 108, 1319(2008) https://doi.org/10.1016/j.ultramic.2008.04.074
  9. Kim, A., Ah, C. S., Yu, H. Y., Yang, J.-H., Baek, I.-B., Ahn, C.-G., Park, C. W. and Jun, M. S., “Ultrasensitive, Label-free, and Realtime Immunodetection Using Silicon Field-effect Transistors,” Appl. Phys. Lett. 91, 103901(2007) https://doi.org/10.1063/1.2779965
  10. Brongersma, M. L., Hartman, J. W. and Atwater, H. A., 'Electromagnetic Energy Transfer and Switching in Nanoparticles Chain Arrays Below the Diffraction Limit,' Phys. Rev. B 62, 356 (2000) https://doi.org/10.1103/PhysRevB.62.R16356
  11. Kim, H. J., Choi, S. K., Kang, S. H. and Oh, K. H., "Structural Phase Transitions of Ge2Sb2Te5 Cells with TiN Electrodes Using a Homemade W Heater Tip," Appl. Phys. Lett. 90, 083103 (2007) https://doi.org/10.1063/1.2709617
  12. Logothetidis, S., Meletis, E. I., Stergioudis, G. and Adjaottor, A. A., "Room Temperature Oxidation Behavior of TiN Thin Films," Thin Solid Films, 338, 304(1999) https://doi.org/10.1016/S0040-6090(98)00975-4
  13. Parlato, L., Pepe, G. P., Pan, D., Lisio, C. D., Pagliarulo, V., Cosentino, A., Marrocco, N., Dalena, D., Peluso, G., Barone, A. and Sobolewski, R., 'Time-Resolved Optical Characterization of Proximized Nano-Bilayers for Ultrafast Photodetector Applications,' J. Phys., 97, 1-6(2008) https://doi.org/10.1088/1742-6596/97/1/012317