DOI QR코드

DOI QR Code

저산소 허혈 뇌 손상을 유발시킨 미성숙 흰쥐에서 마우스 골수 기원 중간엽 줄기 세포 이식 후 기능 회복

Functional recovery after transplantation of mouse bone marrow-derived mesenchymal stem cells for hypoxic-ischemic brain injury in immature rats

  • 최욱선 (고려대학교 의과대학 소아과학교실) ;
  • 신혜경 (고려대학교 의과대학 소아과학교실) ;
  • 은소희 (고려대학교 의과대학 소아과학교실) ;
  • 강훈철 (연세대학교 의과대학 소아과학교실) ;
  • 박성원 (고려대학교 의과대학 소아과학교실) ;
  • 유기환 (고려대학교 의과대학 소아과학교실) ;
  • 홍영숙 (고려대학교 의과대학 소아과학교실) ;
  • 이주원 (고려대학교 의과대학 소아과학교실) ;
  • 은백린 (고려대학교 의과대학 소아과학교실)
  • Choi, Wooksun (Department of Pediatrics, Korea University College of Medicine) ;
  • Shin, Hye Kyung (Department of Pediatrics, Korea University College of Medicine) ;
  • Eun, So-Hee (Department of Pediatrics, Korea University College of Medicine) ;
  • Kang, Hoon Chul (Department of Pediatrics, Yonsei University College of Medicine) ;
  • Park, Sung Won (Department of Pediatrics, Korea University College of Medicine) ;
  • Yoo, Kee Hwan (Department of Pediatrics, Korea University College of Medicine) ;
  • Hong, Young Sook (Department of Pediatrics, Korea University College of Medicine) ;
  • Lee, Joo Won (Department of Pediatrics, Korea University College of Medicine) ;
  • Eun, Baik-Lin (Department of Pediatrics, Korea University College of Medicine)
  • 투고 : 2009.03.06
  • 심사 : 2009.05.12
  • 발행 : 2009.07.15

초록

목 적 : HIE의 치료법으로 줄기 세포가 대안으로 떠오르고 있다. mMSC가 성인 동물 모델에서의 뇌졸중 및 퇴행성 뇌질환에 유의한 기능 회복을 보인다는 보고가 많이 있으나 미성숙 동물 모델에서의 연구 보고는 거의 없는 상태이다. 이에 HIE가 유발된 미성숙뇌에 mMSC를 투여하여 기능 회복에 대한 효과를 평가하고자 본 연구를 시행하였다. 방 법 : 생후 7일된 수컷 Sprague-Dawley 흰쥐를 sham 대조군, 뇌 손상 대조군, 고용량 mMSC 이식군 및 저용량 mMSC 이식군으로 나누었으며 저산소 허혈 뇌 손상 유도 2주 후에 mMSC를 병변부 국소 이식을 시행하였다. 세포 이식 2, 4, 6 및 8주째에 개방장 시험을 시행하여 운동 기능 회복 정도를 평가하였고, 이후 1주일 동안 Morris 수중 미로 시험을 3개 부문으로 시행하여 학습 및 기억력 회복 정도를 평가하였다. 결 과 : 개방장 시험 결과 네 군간에서 통계적으로 유의한 차이는 없었다(F=0.412, P=0.745). 공간 획득 검사에서 네 군간 평균 탈출 시간에 서로 차이가 있었고(F=380.319, P<0.01), 고용량 mMSC 이식군 및 sham 대조군은 뇌 손상 대조군에 비해 검사 2일째부터 5일째까지 각각 평균 탈출 시간이 감소하였으며(P<0.05), 시간이 갈수록 더 유의하게 차이를 보였다(F=16.034, P<0.01). 참조 기억 검사에서는 네 군간 차이는 없었으며 시각 검사에서는 다섯번째 시행 검사에서만 고용량 mMSC 이식군과 뇌 손상 대조군간에 통계적으로 유의한 차이가 있었다(P<0.05). 결 론 : 일부 검사에서만 고용량 mMSC 이식의 효과가 뚜렷하였고 그 외의 검사에는 통계적으로 유의한 결과는 보이지는 않았으나 산술적인 호전을 보이는 것을 확인할 수 있었다. 향후 최적의 효과를 보이는 줄기 세포의 농도와 이식 시기를 결정하는 연구가 필요할 것으로 보이며 HIE에서 mMSC가 대안적인 치료 수단으로 이용될 수 있다고 생각된다.

Purpose : We aimed to investigate the efficacy of and functional recovery after intracerebral transplantation of different doses of mouse mesenchymal stem cells (mMSCs) in immature rat brain with hypoxic-ischemic encephalopathy (HIE). Methods : Postnatal 7-days-old Sprague-Dawley rats, which had undergone unilateral HI operation, were given stereotaxic intracerebral injections of either vehicle or mMSCs and then tested for locomotory activity in the 2nd, 4th, 6th, and 8th week of the stem cell injection. In the 8th week, Morris water maze test was performed to evaluate the learning and memory dysfunction for a week. Results : In the open field test, no differences were observed in the total distance/the total duration (F=0.412, P=0.745) among the 4 study groups. In the invisible-platform Morris water maze test, significant differences were observed in escape latency (F=380.319, P<0.01) among the 4 groups. The escape latency in the control group significantly differed from that in the high-dose mMSC and/or sham group on training days 2-5 (Scheffe's test, P<0.05) and became prominent with time progression (F=6.034, P<0.01). In spatial probe trial and visible-platform Morris water maze test, no significant improvement was observed in the rats that had undergone transplantation. Conclusion : Although the rats that received a high dose of mMSCs showed significant recovery in the learning-related behavioral test only, our data support that mMSCs may be used as a valuable source to improve outcome in HIE. Further study is necessary to identify the optimal dose that shows maximal efficacy for HIE treatment.

키워드

과제정보

연구 과제 주관 기관 : 대한소아과학회

참고문헌

  1. Vannucci RC, Perlman JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997;100:1004-14 https://doi.org/10.1542/peds.100.6.1004
  2. Perlman JM. Intervention strategies for neonatal hypoxic- ischemic cerebral injury. Clin Ther 2006;28:1353-65 https://doi.org/10.1016/j.clinthera.2006.09.005
  3. Calvert JW, Zhang JH. Pathophysiology of an hypoxic-ischemic insult during the perinatal period. Neurol Res 2005;27: 246-60 https://doi.org/10.1179/016164105X25216
  4. Pontikoglou C, Delorme B, Charbord P. Human bone marrow native mesenchymal stem cells. Regen Med 2008;3:731-41 https://doi.org/10.2217/17460751.3.5.731
  5. Sell S. Stem cells: What are they? Where do they come from? Why are they here? When do they go wrong? Where are they going? In: Sell S, editor. Stem cells handbook. 1st ed. Totowa: Humana Press Co, 2004:1-18
  6. Lindvall O, Kokaia Z, Martinez-Serrano A. Stem cell therapy for human neurodegenerative disorders-how to make it work. Nat Med 2004;10 Suppl 1:S42-50 https://doi.org/10.1038/nm1064
  7. Pavlichenko N, Sokolova I, Vijde S, Shvedova E, Alexandrov G, Krouglyakov P, et al. Mesenchymal stem cells transplantation could be beneficial for treatment of experimental ischemic stroke in rats. Brain Res 2008;1233:203-13 https://doi.org/10.1016/j.brainres.2008.06.123
  8. Onda T, Honmou O, Harada K, Houkin K, Hamada H, Kocsis JD. Therapeutic benefits by human mesenchymal stem cells (hMSCs) and Ang-1 gene-modified hMSCs after cerebral ischemia. J Cereb Blood Flow Metab 2008;28:329-40 https://doi.org/10.1038/sj.jcbfm.9600527
  9. Morita E, Watanabe Y, Ishimoto M, Nakano T, Kitayama M, Yasui K, et al. A novel cell transplantation protocol and its application to an ALS mouse model. Exp Neurol 2008; 213:431-8 https://doi.org/10.1016/j.expneurol.2008.07.011
  10. Zhang J, Li Y, Chen J, Cui Y, Lu M, Elias SB, et al. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 2005;195:16- 26 https://doi.org/10.1016/j.expneurol.2005.03.018
  11. Berger R, Garnier Y. Pathophysiology of perinatal brain damage. Brain Res Brain Res Rev 1999;30:107-34 https://doi.org/10.1016/S0165-0173(99)00009-0
  12. Scafidi J, Gallo V. New concepts in perinatal hypoxia ischemia encephalopathy. Curr Neurol Neurosci Rep 2008;8:130-8 https://doi.org/10.1007/s11910-008-0021-2
  13. Lawn JE, Cousens S, Zupan J. 4 million neonatal deaths: when? Where? Why? Lancet 2005;365:891-900 https://doi.org/10.1016/S0140-6736(05)71048-5
  14. Kim HT, Kim IS, Lim SE, Lee IS, Park KI. Gene and cell replacement via neural stem cells. Yonsei Med J 2004;1:406- 14
  15. Conti L, Reitano E, Cattaneo E. Neural stem cell systems: diversities and properties after transplantation in animal models of diseases. Brain Pathol 2006;16:143-54 https://doi.org/10.1111/j.1750-3639.2006.00009.x
  16. Meng XT, Li C, Dong ZY, Liu JM, Li W, Liu Y, et al. Co-transplantation of bFGF-expressing amniotic epithelial cells and neural stem cells promotes functional recovery in spinal cord-injured rats. Cell Biol Int 2008;32:1546-58 https://doi.org/10.1016/j.cellbi.2008.09.001
  17. Bantubungi K, Blum D, Cuvelier L, Wislet-Gendebien S, Rogister B, Brouillet E, et al. Stem cell factor and mesenchymal and neural stem cell transplantation in a rat model of Huntington's disease. Mol Cell Neurosci 2008;37:454-70 https://doi.org/10.1016/j.mcn.2007.11.001
  18. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999;284:143-7 https://doi.org/10.1126/science.284.5411.143
  19. Brazelton TR, Rossi FM, Keshet GI, Blau HM. From marrow to brain: expression of neuronal phenotypes in adult mice. Science 2000;290:1775-9 https://doi.org/10.1126/science.290.5497.1775
  20. Woodbury D, Schwarz EJ, Prockop DJ, Black IB. Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 2000;61:364-70 https://doi.org/10.1002/1097-4547(20000815)61:4<364::AID-JNR2>3.0.CO;2-C
  21. Fu L, Zhu L, Huang Y, Lee TD, Forman SJ, Shih CC. Derivation of neural stem cells from mesenchymal stemcells: evidence for a bipotential stem cell population. Stem Cells Dev 2008;17:1109-21 https://doi.org/10.1089/scd.2008.0068
  22. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615-25 https://doi.org/10.1182/blood.V98.9.2615
  23. Caplan AI, Dennis JE. Mesenchymal stem cells as trophic mediators. J Cell Biochem 2006;98:1076-84 https://doi.org/10.1002/jcb.20886
  24. Chen X, Li Y, Wang L, Katakowski M, Zhang L, Chen J, et al. Ischemic rat brain extracts induce human marrow stromal cell growth factor production. Neuropathology 2002;22:275-9 https://doi.org/10.1046/j.1440-1789.2002.00450.x
  25. Chen J, Li Y, Chopp M. Intracerebral transplantation of bone marrow with BDNF after MCAo in rat. Neuropharmacology 2000;39:711-6 https://doi.org/10.1016/S0028-3908(00)00006-X
  26. Sanchez-Ramos J, Song S, Cardozo-Pelaez F, Hazzi C, Stedeford T, Willing A, et al. Adult bone marrow stromal cells differentiate into neural cells in vitro. Exp Neurol 2000; 164:247-56 https://doi.org/10.1006/exnr.2000.7389
  27. Zheng T, Rossignol C, Leibovici A, Anderson KJ, Steindler DA, Weiss MD. Transplantation of multipotent astrocytic stem cells into a rat model of neonatal hypoxic-ischemic encephalopathy. Brain Res 2006;1112:99-105 https://doi.org/10.1016/j.brainres.2006.07.014
  28. Zacharek A, Chen J, Cui X, Li A, Li Y, Roberts C, et al. Angiopoietin1/Tie2 and VEGF/Flk1 induced by MSC treatment amplifies angiogenesis and vascular stabilization after stroke. J Cereb Blood Flow Metab 2007;27:1684-91 https://doi.org/10.1038/sj.jcbfm.9600475
  29. Chen J, Zhang ZG, Li Y, Wang L, Xu YX, Gautam SC, et al. Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats. Circ Res 2003;92:692-9 https://doi.org/10.1161/01.RES.0000063425.51108.8D
  30. Balduini W, De Angelis V, Mazzoni E, Cimino M. Long- lasting behavioral alterations following a hypoxic/ischemic brain injury in neonatal rats. Brain Res 2000;859:318-25 https://doi.org/10.1016/S0006-8993(00)01997-1
  31. Ikeda T, Mishima K, Yoshikawa T, Iwasaki K, Fujiwara M, Xia YX, et al. Selective and long-term learning impairment following neonatal hypoxic-ischemic brain insult in rats. Behav Brain Res 2001;118:17-25 https://doi.org/10.1016/S0166-4328(00)00287-4
  32. Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, et al. Behavioral and histological characterization of intrahippocampal grafts of human bone marrow-derived multipotent progenitor cells in neonatal rats with hypoxic-ischemic injury. Cell Transplant 2006;15:231-8 https://doi.org/10.3727/000000006783982034
  33. Yasuhara T, Hara K, Maki M, Mays RW, Deans RJ, Hess DC, et al. Intravenous grafts recapitulate the neurorestoration afforded by intracerebrally delivered multipotent adult progenitor cells in neonatal hypoxic-ischemic rats. J Cereb Blood Flow Metab 2008;28:1804-10 https://doi.org/10.1038/jcbfm.2008.68
  34. Zhong C, Qin Z, Zhong CJ, Wang Y, Shen XY. Neuroprotective effects of bone marrow stromal cells on rat organotypic hippocampal slice culture model of cerebral ischemia. Neurosci Lett 2003;342:93-6 https://doi.org/10.1016/S0304-3940(03)00255-6
  35. Isakova IA, Baker K, DuTreil M, Dufour J, Gaupp D, Phinney DG. Age- and dose-related effects on MSC engraftment levels and anatomical distribution in the central nervous systems of nonhuman primates: identification of novel MSC subpopulations that respond to guidance cues in brain. Stem Cells 2007;25:3261-70 https://doi.org/10.1634/stemcells.2007-0543
  36. Chen J, Li Y, Wang L, Zhang Z, Lu D, Lu M, Chopp M. Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemia in rats. Stroke 2001;32:1005-11
  37. Borlongan CV, Lind JG, Dillon-Carter O, Yu G, Hadman M, Cheng C, et al. Bone marrow grafts restore cerebral blood flow and blood brain barrier in stroke rats. Brain Res 2004; 1010:108-16 https://doi.org/10.1016/j.brainres.2004.02.072
  38. Ogawa Y, Sawamoto K, Miyata T, Miyao S, Watanabe M, Nakamura M, et al. Transplantation of in vitro-expanded fetal neural progenitor cells results in neurogenesis and functional recovery after spinal cord contusion injury in adult rats. J Neurosci Res 2002;69:925-33 https://doi.org/10.1002/jnr.10341
  39. Ma J, Wang Y, Yang J, Yang M, Chang KA, Zhang L, et al. Treatment of hypoxic-ischemic encephalopathy in mouse by transplantation of embryonic stem cell-derived cells. Neurochem Int 2007;51:57-65 https://doi.org/10.1016/j.neuint.2007.04.012
  40. Yasuhara T, Matsukawa N, Yu G, Xu L, Mays RW, Kovach J, et al. Transplantation of cryopreserved human bone marrow-derived multipotent adult progenitor cells for neonatal hypoxic-ischemic injury: targeting the hippocampus. Rev Neurosci 2006;17:215-25
  41. Shen LH, Li Y, Chen J, Zacharek A, Gao Q, Kapke A, et al. Therapeutic benefit of bone marrow stromal cells administered 1 month after stroke. J Cereb Blood Flow Metab 2007;27:6-13 https://doi.org/10.1038/sj.jcbfm.9600311