Effect of Amino Modified Siloxane on the Properties of Epoxy Composites for MEMS Adhesives

MEMS 접착제용 에폭시 복합재의 아미노 변성 실록산 첨가에 의한 효과

  • Lee, Donghyun (Department of Chemical Engineering., Kwangwoon University) ;
  • Yu, Kihwan (Department of Chemical Engineering., Kwangwoon University) ;
  • Kim, Daeheum (Department of Chemical Engineering., Kwangwoon University)
  • 이동현 (광운대학교 화학공학과) ;
  • 유기환 (광운대학교 화학공학과) ;
  • 김대흠 (광운대학교 화학공학과)
  • Received : 2009.01.20
  • Accepted : 2009.03.08
  • Published : 2009.04.30

Abstract

In the NCAs(non-conductive adhesive) for adhesion of Micro Electro Mechanical System(MEMS), there are some problems such as delamination and cracking, because of the differences of CTE(coefficients of thermal expansion) between NCAs and substrates. Addition of inorganic particle or flexibilizer have been performed to solve those problems. In this study, to improve the flexibility of epoxy adhesive, epoxy/siloxane composites were prepared by adding 1, 3, or 5 phr of amino modified siloxane(AMS). Glass transition temperatures(Tg), moduli and CTE of those composites were measured to confirm effects of siloxane on thermal/mechanical properties of siloxane/epoxy-composites. Tg of AMS/epoxy-composites decreased from $134^{\circ}C$ to $122^{\circ}C$ with increasing AMS contents and moduli decreased from 2,425 MPa to 2,143 MPa with increasing AMS contents. But CTE of AMS/epoxy-composites increased from $67ppm/^{\circ}C$ to $71ppm/^{\circ}C$ with increasing AMS contents. In short, the addition of siloxane is effective for enhancing the flexibility of epoxy but leads to the decrease of Tg.

소형 반도체 접착에 쓰이는 비전도성 고분자 접착제에서 발생하는 문제점으로는 접착소재와 칩 또는 기판 간의 열 팽창계수 차이에 의한 박리, 크래킹 및 접착력 부족 등이 있다. 이러한 결점의 보완을 위하여 무기입자를 첨가한 고분자 복합소재를 통해 접착제의 열팽창계수를 낮추거나, 접착소재에 유연성 첨가제를 첨가하는 방법 등이 사용되고 있다. 본 연구에서는 양 말단에 아민기를 가지는 아미노 변성 실록산(AMS)의 함량을 1, 3, 5 phr로 변화시켜 실록산/에폭시 복합재를 제조하였다. 그 결과, 실록산의 첨가는 유리전이 온도를 $134^{\circ}C$에서 $122^{\circ}C$까지, 모듈러스를 2,425 MPa에서 2,143 MPa까지 감소시켰으며, 열팽창계수는 67 ppm/에서 71 ppm/까지 상승시켰다. 실록산은 유연성 부여에는 효과를 나타냈지만, 유리전이온도의 감소를 가져오는 것을 확인하였다.

Keywords

References

  1. Lee, J. W. and Yoo, J. Y., "Die Attach Adhesive Films for Semiconductor Chip Stacking Process," 2006 TCI Report, 1-60(2006)
  2. Kim, J. M., 'Recent Advances on Conductive Adhesives in Electronic Packaging,' Journal of KWJS, 25, 133-138(2007)
  3. Li, Y. and Wong, C. P., "Recent Advances of Conductive Adhesives as a Lead-free Alternative in Electronic Packaging: Materials, Processing, Reliability and Applications", Materials Science and Engineering R: Reports, 51, 1-35(2006) https://doi.org/10.1016/j.mser.2006.01.001
  4. Matejka, L., Dukh, O. and Kolarik, J., "Reinforcement of Crosslinked Rubbery Epoxies by in-situ Formed Silica," Polymer, 41, 1449 (2000) https://doi.org/10.1016/S0032-3861(99)00317-1
  5. Haas, K. H. and Wolter, H., "Synthesis, Properties and Applications of Inorganic–organic Copolymers," Curr. Opin. Solid St. M., 4, 571(1999) https://doi.org/10.1016/S1359-0286(00)00009-7
  6. Salahuddin, N., Moet, A., Hiltner, A. and Baer, E., "Nanoscale Highly Filled Epoxy Nanocomposite," Eur. Polym. J., 38, 1477 (2002) https://doi.org/10.1016/S0014-3057(02)00015-0
  7. Matejka, L., Dusek, K., Kriz, J. and Lednicky, F., "Formation and Structure of the Epoxy-silica Hybrids," Polymer, 40, 171(1998) https://doi.org/10.1016/S0032-3861(98)00214-6
  8. Min, B. K., 'The Concept of Composite Material and It's Appli-cation,' Polymer (Korea), 12, 599(1988)
  9. Wang, M. W., Wu, H. and Lin, M. S., "Synthesis, Curing Behavior and Properties of Siloxane and Imide-containing Tetrafunctional Epoxy," Journal of Polymer Research, 15, 1-9(2008) https://doi.org/10.1007/s10965-007-9137-3
  10. Gong, H. J. and Kim, W., 'Properties of Epoxy Adhesive Modified with Siloxane-imide,' Elastomer, 43, 39-48(2008)
  11. Nagendiran, S., Premkumar, S. and Alagar, M., "Mechanical and Morphological Properties of Organic-inorganic, Hybrid, Clay-filled, and Cyanate Ester/siloxane Toughened Epoxy Nanocomposites," Journal of Applied Polymer Science, 106, 1263-1273 (2007) https://doi.org/10.1002/app.26277
  12. Yeh, J. M., Huang, H. Y., Chen, C. L., Su, W. F. and Yu, Y. H., 'Siloxane-modified Epoxy Resin–clay Nanocomposite Coatings with Advanced Anticorrosive Properties Prepared by a Solution Dispersion Approach," Surface & Coatings Technology, 200, 2753-2763(2006) https://doi.org/10.1016/j.surfcoat.2004.11.008
  13. Morita, Y., Tajima, S., Suzuki, H. and Sugino, H., "Thermally Initiated Cationic Polymerization and Properties of Epoxy Siloxane," Journal of Applied Polymer Science, 100, 2010-2019(2006) https://doi.org/10.1002/app.22603
  14. Marimuthu, S., Madurai, S. L. and Boreddy, S. R. R., "Chemistry of Siloxane Amide as a New Curing Agent for Epoxy Resins: Material Characterization and Properties," Macromol. Chem. Phys. 206, 2501-2511(2005) https://doi.org/10.1002/macp.200500143
  15. Park, S. J., Jin, F. L., Park, J. H. and Kim, K. S., "Synthesis of a Novel Siloxane-containing Diamine for Increasing Flexibility of Epoxy Resins," Materials Science and Engineering: A, 399, 377-381(2005) https://doi.org/10.1016/j.msea.2005.04.020
  16. Ahmad, S., Gupta, A. P., Sharmin, E., Alam, M. and Pandey, S. K., "Synthesis, Characterization and Development of High Performance Siloxane-modified Epoxy Paints," Progress in Organic Coatings, 54, 248-255(2005) https://doi.org/10.1016/j.porgcoat.2005.06.013
  17. Li, H. T., Lin, M. S., Chuang, H. R. and Wang, M. W., "Siloxaneand Imide-modified Epoxy Resin Cured with Siloxane-containing Dianhydride," Journal of Polymer Research, 12, 385-391(2005) https://doi.org/10.1007/s10965-005-1766-9
  18. Lee, H., Fasulo, P. D., Rodgers, W. R. and Paul, D. R., "TPO Based Nanocomposites. Part 2. Thermal Expansion Behavior," Polymer, 47, 3528-3539(2006) https://doi.org/10.1016/j.polymer.2006.03.016