Physical Property and Optimal Operating Condition in the Salting-out Dye Crystallization System

염료·염석결정화계에서 물성과 최적조업조건

  • Pyun, Yu Ri (Department of Chemical engineering, Soonchunhyang University) ;
  • Han, Hyun Kak (Department of Chemical engineering, Soonchunhyang University) ;
  • Jung, Hyong Ki (Department of Chemical engineering, Soonchunhyang University)
  • 편유리 (순천향대학교 나노화학공학과) ;
  • 한현각 (순천향대학교 나노화학공학과) ;
  • 정형기 (순천향대학교 나노화학공학과)
  • Received : 2008.04.29
  • Accepted : 2009.02.03
  • Published : 2009.04.30

Abstract

In this paper, the density, viscosity and solubility are measured to know the physical properties of dye. By changing the concentration of dye solution, the density change of the dye solution was very small and the viscosity of the dye solution was increased. Also, by changing the temperature of dye solution, the density change of the dye solution was increased but the viscosity of the dye solution was decreased. Solubility of dye conducts under the changing the salt and concentration of dye. In 20 wt% of dye and 15 wt% KCl, the amount of dye crystal is maximal. Also, batch salting-out experiments were performed with various conditions to know the optimal operating conditions of dye crystal. Under the various experiments, optimal operating condition was found based on amount of dye; added 15 wt% KCl, $25^{\circ}C$ temperature, 100 RPM, added at once.

본 논문은 소량 다품종 생산체계로 생산되는 정밀화학제품인 고품질 염료제조를 위한 고효율 염료결정화 분리기술에 대한 연구로써 염료 염석결정화계에서 염료의 물성과 최적조업조건에 대해 연구하였다. 먼저 염료의 물리적 특성을 알아보기 위해 밀도, 점도 등을 다양한 조건하에 측정하였다. 염료의 밀도는 물과 비슷한 특성을 보였으며, 염료 용액의 농도가 변화할 때, 밀도 변화는 거의 없었으며, 점도는 농도가 증가 할수록 증가했다. 염료 용액의 온도가 높아짐에 따라 밀도는 증가하였으나, 점도는 감소하였다. 또 염료의 용해도 실험 결과 20 wt% 염료 용액에 15 wt% KCl을 첨가하였을 때 염료결정의 생성량이 최대로 나타났다. 또한, 최적의 조업조건을 찾기 위해 다양한 변수(온도, RPM, 염첨가 방법 등)를 제어하여 시간에 따라 실험하였다. 15 wt% KCl과 20 wt% 염료용액으로 실험한 결과 최적의 조업조건은 $25^{\circ}C$, 100 RPM, 염을 한 번에 넣는 방법으로 나타났다. 또 최적 조업조건으로 실험을 수행한 결과 기존의 공정($35^{\circ}C$, 150 RPM)보다 생성량이 증가하였다. 따라서 최적화 공정을 찾음으로써 생성량 증가와 에너지 저감 효과가 기대된다.

Keywords

References

  1. Tavare, N. S., Industrial crystallization : process simulation analysis and design
  2. Judit, T., Andrea, K. F. and Susan, H. P., 'The Formation of Fine Particles by Salting-out Precipitation," Chemical Engineering and Processing, 44(2), 193-200,8( 2005) https://doi.org/10.1016/j.cep.2004.02.013
  3. Hash, J. and Okorafor, O. C., "Crystal Size Distribution(CSD) of Batch Salting-out Crystallization Process for Sodium Sulfate," Chemical Engineering and Processing In: Process Intensification, 47(4), 622-632(2008) https://doi.org/10.1016/j.cep.2006.12.006
  4. Mullin, J. W., Crystallization. -3Rev. Ed
  5. Nyvlt, J., 'Batch Salting-out Crystallization,' Chem. Eng. Process. 39-42(1992) https://doi.org/10.1016/0255-2701(92)80006-O
  6. Laloue, N., Couenne, F., Le Gorrec, Y., Kohl, M., Tanguy, D. and Tayakout-Fayolle, M., "Dynamic Modeling of a Batch Crystallization Process: A Stochastic Approach for Agglomeration and Attrition Process," Chemical Engineering Science, 62(23), 6604-6614(2007) https://doi.org/10.1016/j.ces.2007.07.039
  7. Pinho, S. P., Macedo, E. A., "Solubility of NaCl, NaBr, and KCl in Water, Methanol, Ethanol, and Their Mixed Solvents," Journal of Chemical and Engineering Data, 50(1), 29-32(2005) https://doi.org/10.1021/je049922y
  8. Li, H., Wang, J., Bao, Y., Guo, Z. and Zhang, M., "Rapid Sonocrystallization in the Salting-out Process," Journal of Crystal Growth, 247(1-2), 192-198(2003) https://doi.org/10.1016/S0022-0248(02)01941-3
  9. Adamska, K., Voelkel, A. and Heberger, K., "Selection of Solubility Parameters for Characterization of Pharmaceutical Excipients," Journal of Chromatography, 1171(1-2), 90-97(2007) https://doi.org/10.1016/j.chroma.2007.09.034
  10. Davey, R. and Rutti, A., "Agglomeration in the Crystallization of Hexamethylene Tetramine from Aqueous Solution," Journal of Crystal Growth, 32(2), 221-226(1976) https://doi.org/10.1016/0022-0248(76)90036-1