Development of Microsatellite Markers to Distinguish South Korean and Chinese Ginseng

  • Ahn, Chang-Ho (Colleges of Forest and Environmental Sciences, Kangwon National University) ;
  • Kim, Boo-Bae (Department of Biology, Kongju National University) ;
  • Yoon, Eui-Soo (Department of Biology, Kongju National University) ;
  • Choi, Yong-Eui (Colleges of Forest and Environmental Sciences, Kangwon National University)
  • Received : 2009.07.10
  • Accepted : 2009.08.31
  • Published : 2009.10.30

Abstract

Korean wild and forest cultivated ginseng has long been accepted as high medicinal values compared to field cultivated ginseng. Owing to the high price of Korean wild ginseng, Chinese wild and forest cultivated ginseng were smuggled and sold as Korean wild and forest cultivated ginseng. Therefore, an efficient method is required to distinguish Korean ginseng from Chinese ginseng. Microsatellites, simple sequence repeats (SSRs), are highly polymorphic loci present in DNA that consist of repeating units of base pairs. Thus SSR markers are highly advantageous for detection of small genetic variances of intra-species. In the present study, we constructed a microsatellite-enriched genomic library from South Korean wild Panax ginseng. After sequence analysis of 992 randomly picked positive colonies, 126 (12.7%) of the colonies were found to contain microsatellite sequences, and 38 primer pairs were designed. By polymorphism assessment using 36 primer pairs, 4 primers (PG409, PG450, PG491, and PG582) were shown to be polymorphic to distinguish the South Korean ginseng from the Chinese ginseng. These 4 microsatellite markers will provide powerful tools to authenticate South Korean ginseng from Chinese ginseng.

Keywords

Acknowledgement

Supported by : Korea Forest Servic,Ministry of Education

References

  1. Blears, M.J., Grandis. S.A., Lee, H. and Trevors, J.T. 1998. Amplified fragment length polymorphism (AFLP): a review of the procedure and its applications. J. lnd. Microbiol. Biotechnol. 21: 99-114 https://doi.org/10.1038/sj.jim.2900537
  2. Boehm, C.L., Harrison, H.C., Jung, G. and Nienhuis, J. 1999. Organization of American and Asian ginseng germplasm using randomly amplified polymorphic DNA (RAPD) markers. J. Amer. Soc. Hort. Sci. 124: 252-256
  3. Bonierbale, M.W., Plasisted, R. L. and Tanksley, S.D. 1988. RFLP maps based on a common set of clones reveal modes of chromosomal evolution in potato and tomato. Genetics 120: 1095-1103
  4. Choi, Y.E., Ahn, C.H., Kim, B.B. and Yoon, E.S. 2008. Development of species specific AFLP-derived SCAR marker for authentication of Panax japonicus C.A. Meyer. Biol. Pharm. Bull. 31: 135-138 https://doi.org/10.1248/bpb.31.135
  5. Fushimi, H., Komatsu, K., Namba, T., and Isobe, M. 2000. Genetic heterogenity of ribosomal RNA gene and matK gene in Panax notoginseng. Planta Med. 66: 659-661 https://doi.org/10.1055/s-2000-8636
  6. Ha, W.Y., Shaw, P.C., Liu, J., Yau, F.C.F. and Wang, J. 2002. Authentication of Panax ginseng and Panax quinquefolius using amplified fragment length polymorphism (AFLP) and directed amplification of minisatellite region DNA (DAMD). J. Agric. Food. Chem. 50: 1871-1875 https://doi.org/10.1021/jf011365l
  7. Ho, I.S.H. and Leung, F.C. 2002. Isolation and characterization of repetitive DNA sequences from Panax ginseng. Mol. Genet. Genomics 266: 951-961 https://doi.org/10.1007/s00438-001-0617-6
  8. Kim. B.B., Jeong, J.H., Jung, S.J., Yun, D.W., Yoon, E.S. and Choi, Y.E. 2005. Authentication of Korean Panax ginseng from Chinease Panax ginseng and Panax quinquefolius by AFLP analysis. J. Plant Biotechnol. 7: 81-86
  9. Kim, J., Jo, B.H., Lee, K.L., Yoon, E.S., Ryu, G.H. and Chung, K.W. 2007. Identification of new microsatellite markers in Panax ginseng. Mol. Cells 24: 60-68
  10. Kim, S.M. and Sohn, J.K. 2005. Identification of a rice gene (Bph 1) conferring resistance to brown planthopper (Nilaparvata lugens Stal) using STS marker. Mol. Cells 20: 30-34
  11. Kurata, N., Umehara, Y., Tanoue, H. and Sasaki, T. 1997. Physical mapping of the rice genome with YAC clones. Plant Mol. Biol. 35: 101-113 https://doi.org/10.1023/A:1005760717474
  12. Lin, J.J. and Kuo, J. 1995. AFLP: A novel PCR-based assay for plant and bacterial DNA finger printing. FOCUS 17: 66-70
  13. Ma, K.H., Dixit, A., Kim, Y.C., Lee, D.Y., Kim, T.S., Cho, E.G. and Park, Y.J. 2007. Development and characterization of new microsatellite markers for ginseng (Panax ginseng C. A. Meyer). Conserv. Genet. 8: 1507-1509 https://doi.org/10.1007/s10592-007-9284-4
  14. Mackill, D.J., Zhang, Z., Renona, E.D. and Colowit, P.M. 1996. Level of polymorphism and genetic mapping of AFLP markers in rice. Genome 39: 969-977 https://doi.org/10.1139/g96-121
  15. Martin, G.B., Brommonschenkel, S.H., Chunwongse, J., Frary, A., Ganal, M.W., Spivey, R., Wu, T., Earle, E.D.and Tanksley, S.D. 1993. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432-1436 https://doi.org/10.1126/science.7902614
  16. Mihalov, J.J., Marderosian, A.D. and Pierce, J.C. 2000. DNA identification of commercial ginseng samples. J. Agric. Food Chem. 48: 3744-3752 https://doi.org/10.1021/jf000011b
  17. Ngan, F., Shaw, P., But, P. and Wang, J. 1999. Molecular authentication of Panax species. Phytochemistry 50: 787-791 https://doi.org/10.1016/S0031-9422(98)00606-2
  18. Powell, W.W., Machery, G.C. and Provan, J. 1996. Polymorphism revealed by simple sequence repeats. Trends Genet. 1: 215-222 https://doi.org/10.1016/0168-9525(85)90083-6
  19. Schluter, C. and Punja, Z.K. 2000, Genetic diversity among natural and cultivated populations and seed lots of American ginseng (Panax quinquefolius L.) in Canada. Int. J. Plant Sci. 163: 27-439
  20. Shim, Y.H., Choi, J.H., Park, C.D., Lim, C.J., Cho, J.H. and Kim, H.J. 2003. Molecular differentiation of Panax species by RAPD analysis. Arch. Pharm. Res. 26: 601-605 https://doi.org/10.1007/BF02976708
  21. Tanksley, S.D., Grandillo, S., Fulton, T.M., Zamir, D., Eshed, Y., Petiard, V., Lopez, J. and Beck-Bunn, T. 1996. Advanced backcross QTL analysis in a cross between an elite processing line of tomato and its wild relative L. pimpinellifolium. Theor. Appl. Genet. 92: 213-224 https://doi.org/10.1007/BF00223378
  22. Turnpenny, P. and Ellard, S. 2005. Emery's Elements of Medical Genetics, 12th. ed. Elsevier, London
  23. Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Horne, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. 1995. AFLP: A new technique for DNA fingerprinting. Nucl. Acids Res. 23: 4407-4414 https://doi.org/10.1093/nar/23.21.4407
  24. Yang, C.J., Wang, J., Mu, L.Q., Li, S.C., Liu, G.J. and Hu, C.Q. 2007. Development of an EST-SSR marker in Panax ginseng. Chin. J. Agr. Biotechnol. 5: 175-181 https://doi.org/10.1017/S1479236208002167