References
- Buckingham, M. (2006) Myogenic progenitor cells and skeletal myogenesis in vertebrates. Curr. Opin. Genet Dev. 16, 525-532 https://doi.org/10.1016/j.gde.2006.08.008
- Corcoran, M., Lamon-Fava, P. S. and Fielding, R. A. (2007) Skeletal muscle lipid deposition and insulin resistance: effect of dietary fatty acids and exercise. Am. J. Clin. Nutr. 85, 662-677
- Schrauwen-Hinderling, V. B., Hesselink, M. K., Schrauwen, P. and Kooi, M. E. (2006) Intramyocellular lipid content in human skeletal muscle. Obesity (Silver Spring) 14, 357-367 https://doi.org/10.1038/oby.2006.47
- Goodpaster, B. H., He, J., Watkins, S. and Kelley, D. E. (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J. Clin. Endocrinol. Metab. 86, 5755-5761
- Ye, J. M., Doyle, P. J., Iglesias, M. A., Watson, D. G., Cooney, G. J. and Kraegen, E. W. (2001) Peroxisome proliferator- activated receptor (PPAR)-alpha activation lowers muscle lipids and improves insulin sensitivity in high fat-fed rats: comparison with PPAR-gamma activation. Diabetes 50, 411-417 https://doi.org/10.2337/diabetes.50.2.411
- Kadowaki, T. and Yamauchi, T. (2005) Adiponectin and adiponectin receptors. Endocr. Rev. 26, 439-451 https://doi.org/10.1210/er.2005-0005
- Arita, Y., Kihara, S., Ouchi, N., Takahashi, M., Maeda, K., Miyagawa, J., Hotta, K., Shimomura, I., Nakamura, T., Miyaoka, K., Kuriyama, H., Nishida, M., Yamashita, S., Okubo, K., Matsubara, K., Muraguchi, M., Ohmoto, Y., Funahashi, T. and Matsuzawa, Y. (1999) Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem. Biophys. Res. Commun. 257, 79-83 https://doi.org/10.1006/bbrc.1999.0255
- Guerre-Millo, M. (2008) Adiponectin: an update. Diabetes Metab. 34, 12-18 https://doi.org/10.1016/j.diabet.2007.08.002
- Kadowaki, T., Yamauchi, T., Kubota, N., Hara, K., Ueki, K. and Tobe, K. (2006) Adiponectin and adiponectin receptors in insulin resistance, diabetes, and the metabolic syndrome. J. Clin. Invest. 116, 1784-1792 https://doi.org/10.1172/JCI29126
- Yamauchi, T., Kamon, J., Ito, Y., Tsuchida, A., Yokomizo, T., Kita, S., Sugiyama, T., Miyagishi, M., Hara, K., Tsunoda, M., Murakami, K., Ohteki, T., Uchida, S., Takekawa, S., Waki, H., Tsuno, N.H., Shibata, Y., Terauchi, Y., Froguel, P., Tobe, K., Koyasu, S., Taira, K., Kitamura, T., Shimizu, T., Nagai, R. and Kadowaki, T. (2003) Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature 423, 762-769 https://doi.org/10.1038/nature01705
- Yamauchi, T., Nio, Y., Maki, T., Kobayashi, M., Takazawa, T., Iwabu, M., Okada-Iwabu, M., Kawamoto, S., Kubota, N., Kubota, T., Ito, Y., Kamon, J., Tsuchida, A., Kumagai, K., Kozono, H., Hada, Y., Ogata, H., Tokuyama, K., Tsunoda, M., Ide, T., Murakami, K., Awazawa, M., Takamoto, I., Froguel, P., Hara, K., Tobe, K., Nagai, R., Ueki, K. and Kadowaki, T. (2007) Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nat. Med. 13, 332-339 https://doi.org/10.1038/nm1557
- Mao, X., Kikani, C. K., Riojas, R. A., Langlais, P., Wang, L., Ramos, F. J., Fang, Q., Christ-Roberts, C. Y., Hong, J. Y., Kim, R. Y., Liu, F. and Dong, L. Q. (2006) APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat. Cell Biol. 8, 516-523 https://doi.org/10.1038/ncb1404
- Hug, C., Wang, J., Ahmad, N. S., Bogan, J. S., Tsao, T. S. and Lodish, H. F. (2004) T-cadherin is a receptor for hexameric and high-molecular-weight forms of Acrp30/adiponectin. Proc. Natl. Acad. Sci. U.S.A. 101, 10308-10313 https://doi.org/10.1073/pnas.0403382101
- Yoon, M. J., Lee, G. Y., Chung, J. J., Ahn, Y. H., Hong, S. H. and Kim, J. B. (2006) Adiponectin increases fatty acid oxidation in skeletal muscle cells by sequential activation of AMP-activated protein kinase, p38 mitogen-activated protein kinase, and peroxisome proliferator-activated receptor alpha. Diabetes 55, 2562-2570 https://doi.org/10.2337/db05-1322
- Tian, L., Luo, N., Klein, R. L., Chung, B. H., Garvey, W. T. and Fu, Y. (2009) Adiponectin reduces lipid accumulation in macrophage foam cells. Atherosclerosis 202, 152-161 https://doi.org/10.1016/j.atherosclerosis.2008.04.011
- Fu, Y., Luo, N., Klein, R. L. and Garvey, W. T. (2005) Adiponectin promotes adipocyte differentiation, insulin sensitivity, and lipid accumulation. J. Lipid. Res. 46, 1369-1379 https://doi.org/10.1194/jlr.M400373-JLR200
- Fujita, T., Furukawa, S., Morita, K., Ishihara, T., Shiotani, M., Matsushita, Y., Matsuda, M. and Shimomura, I. (2005) Glucosamine induces lipid accumulation and adipogenic change in C2C12 myoblasts. Biochem. Biophys. Res. Commun. 328, 369-374 https://doi.org/10.1016/j.bbrc.2004.12.185
- Shimokawa, T., Kato, M., Ezaki, O. and Hashimoto, S. (1998) Transcriptional regulation of muscle-specific genes during myoblast differentiation. Biochem. Biophys. Res. Commun 246, 287-292 https://doi.org/10.1006/bbrc.1998.8600
- Ouchi, N., Kihara, S., Arita, Y., Nishida, M., Matsuyama, A., Okamoto, Y., Ishigami, M., Kuriyama, H., Kishida, K., Nishizawa, H., Hotta, K., Muraguchi, M., Ohmoto, Y., Yamashita, S., Funahashi, T. and Matsuzawa, Y. (2001) Adipocyte-derived plasma protein, adiponectin, suppresses lipid accumulation and class A scavenger receptor expression in human monocyte-derived macrophages. Circulation 103, 1057-1063 https://doi.org/10.1161/01.CIR.103.8.1057
- Krause, M. P., Liu, Y., Vu, V., Chan, L., Xu, A., Riddell, M. C., Sweeney, G. and Hawke., T. J. (2008) Adiponectin is expressed by skeletal muscle fibers and influences muscle phenotype and function. Am. J. Physiol. Cell Physiol. 295, C203-212 https://doi.org/10.1152/ajpcell.00030.2008
- Ingelsson, E., Arnlov, J., Zethelius, B., Vasan, R. S., Flyvbjerg, A., Frystyk, J., Berne, C., Hanni, A., Lind, L. and Sundstrom, J. (2009) Associations of Serum Adiponectin with Skeletal Muscle Morphology and Insulin Sensitivity. J. Clin. Endocrinol. Metab. 94, 953-957 https://doi.org/10.1210/jc.2008-1772
- Yamauchi, T., Kamon, J., Minokoshi, Y., Ito, Y., Waki, H., Uchida, S., Yamashita, S., Noda, M., Kita, S., Ueki, K., Eto, K., Akanuma, Y., Froguel, P., Foufelle, F., Ferre, P., Carling, D., Kimura, S., Nagai, R., Kahn, B. B. and Kadowaki, T. (2002) Adiponectin stimulates glucose utilization and fatty- acid oxidation by activating AMP-activated protein kinase. Nat. Med. 8, 1288-1295 https://doi.org/10.1038/nm788
- Long, Y. C., Barnes, B. R., Mahlapuu, M., Steiler, T. L., Martinsson, S., Leng, Y., Wallberg-Henriksson, H., Andersson, L. and Zierath, J. R. (2005) Role of AMP-activated protein kinase in the coordinated expression of genes controlling glucose and lipid metabolism in mouse white skeletal muscle. Diabetologia 48, 2354-2364 https://doi.org/10.1007/s00125-005-1962-5
- Tugwood, J. D., Issemann, I., Anderson, R. G., Bundell, K. R., McPheat, W. L. and Green, S. (1992) The mouse peroxisome proliferator activated receptor recognizes a response element in the 5' flanking sequence of the rat acyl CoA oxidase gene. EMBO J. 11, 433-439
- Ceddia, R.B., Somwar, R., Maida, A., Fang, X., Bikopoulos, G. and Sweeney, G. (2005) Globular adiponectin increases GLUT4 translocation and glucose uptake but reduces glycogen synthesis in rat skeletal muscle cells. Diabetologia 48, 132-139 https://doi.org/10.1007/s00125-004-1609-y
- Yamauchi, T., Kamon, J., Waki, H., Terauchi, Y., Kubota, N., Hara, K., Mori, Y., Ide, T., Murakami, K., Tsuboyama-Kasaoka, N., Ezaki, O., Akanuma, Y., Gavrilova, O., Vinson, C., Reitman, M. L., Kagechika, H., Shudo, K., Yoda, M., Nakano, Y., Tobe, K., Nagai, R., Kimura, S., Tomita, M., Froguel, P. and Kadowaki, T. (2001) The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7, 941-946 https://doi.org/10.1038/90984
- Takeuchi, T., Adachi, Y., Ohtsuki, Y. and Furihata, M. (2007) diponectin receptors, with special focus on the role of the third receptor, T-cadherin, in vascular disease. Med. Mol. Morphol. 40, 115-120 https://doi.org/10.1007/s00795-007-0364-9
- Ramirez-Zacarias, J. L., Castro-Munozledo, F. and Kuri-Harcuch, W. (1992) Quantitation of adipose conversion and triglycerides by staining intracytoplasmic lipids with Oil red O. Histochemistry 97, 493-497 https://doi.org/10.1007/BF00316069
Cited by
- Relationships between serum adiponectin and soluble TNF-α receptors and glucose and lipid oxidation in lean and obese subjects vol.49, pp.1, 2012, https://doi.org/10.1007/s00592-010-0252-y
- Extracellular annexins and dynamin are important for sequential steps in myoblast fusion vol.200, pp.1, 2013, https://doi.org/10.1083/jcb.201207012
- CRF type 2 receptors mediate the metabolic effects of ghrelin in C2C12 cells vol.22, pp.2, 2014, https://doi.org/10.1002/oby.20535
- Relationships of serum soluble E-selectin concentration with insulin sensitivity and metabolic flexibility in lean and obese women vol.45, pp.3, 2014, https://doi.org/10.1007/s12020-013-0025-9
- Obese subcutaneous adipose tissue impairs human myogenesis, particularly in old skeletal muscle, via resistin-mediated activation of NFκB vol.8, pp.1, 2018, https://doi.org/10.1038/s41598-018-33840-x