DOI QR코드

DOI QR Code

Rhythmic Expression of Mitogen Activated Protein Kinase Activity in Rice

  • Received : 2009.06.01
  • Accepted : 2009.08.26
  • Published : 2009.11.30

Abstract

Mitogen activated protein kinase (MAPK) are known to get activated during various stress signals and transduce the message from the cell membrane to the nucleus for appropriate cellular reorganization. Though, a certain basal activity of MAPK is often observed in the control plants. Prolonged exposure of rice plants to lowered or elevated temperature exhibited a rhythm in the activation of MAPKs. We analyzed existence of a possible endogenous rhythm in the activity of MAPKs in rice plants. The plants growing at constant temperature entrained in 16/8 h day-night cycle showed diurnal rhythm in activity. When the activation of MAPK was tested under continuous conditions by shifting plants to continuous darkness for a period of 72 h, the periodic rhythm persisted and followed a circadian pattern. Analysis of the transcripts of group A, B and C members of MAPKs under above conditions by quantitative real time PCR revealed that the members of group C exhibit periodic rhythm. Our data indicates that the MAP kinase activity in rice follows rhythmic expression in a circadian manner.

Keywords

Acknowledgement

Supported by : Department of Biotechnology (DBT)

References

  1. Canagarajah, B.J., Khokhlatchev, A., Cobb, M.H., and Goldsmith, E.J. (1997). Activation mechanism of the MAP kinase ERK2 by dual phosphorylation. Cell 90, 859-869 https://doi.org/10.1016/S0092-8674(00)80351-7
  2. Dunlap, J.C. (1999). Molecular bases for circadian clocks. Cell 96, 271-290 https://doi.org/10.1016/S0092-8674(00)80566-8
  3. Dunlap, J.C. (2004). Molecular biology of circadian pacemaker systems in chronobiology: biological time keeping, J.J. Loros, and P. DeCoursey, eds., (Sunderland: USA, Sinauer Associates), pp. 212-253
  4. Ehness, R., Ecker, M., Godt, D.E., and Roitsch, T. (1997). Glucose and stress independently regulate source and sink metabolism and defense mechanisms via signal transduction pathways involving protein phosphorylation. Plant Cell 9, 1825-1841 https://doi.org/10.1105/tpc.9.10.1825
  5. Eichberg, J., and Srinivas, I. (1996). Phosphorylation of myelin proteins: Recent advances. Neurochem. Res. 21, 527-535 https://doi.org/10.1007/BF02527718
  6. Hamel, L.P., Nicole, M.C., Sritubtim, S., Morency, M.J., Ellis, M., Ehlting, J., Beaudoin, N., Barbazuk, B., Klessig, D., Lee, J., et al. (2006). Ancient signals: comparative genomics of plant MAPK and MAPKK gene families. Trends Plant Sci. 11, 192-198 https://doi.org/10.1016/j.tplants.2006.02.007
  7. Harada, Y., Sanada, K., and Yoshitaka, F. (2000). Circadian activation of bullfrog retinal mitogen-activated protein kinase associates with oscillator function. J. Biol. Chem. 275, 37078-37085 https://doi.org/10.1074/jbc.M004706200
  8. Harauz, G., Ishiyama, N., and Bates, I. (2000). Analogous standard motifs in myelin basic protein and in MARCKS. Mol. Cell. Biochem. 209, 155-163 https://doi.org/10.1023/A:1007176216360
  9. Harmer, S.L., Hogenesch, J.B, Straume, M., Chang, H.S., Han, B., Zhu, T., Wang, X., Kreps, J.A., and Kay, S.A. (2000). Orchestrated transcription of key pathways in Arabidopsis by the circadian clock. Science 290, 2110-2113 https://doi.org/10.1126/science.290.5499.2110
  10. Jonak, C., Kiegerl, S., Ligterink, W., Barker, P.J., Huskisson, N.S., and Hirt, H. (1996). Stress signaling in plants: A mitogenactivated protein kinase pathway is activated by cold and drought. Proc. Natl. Acad. Sci. USA 93, 11274-11279 https://doi.org/10.1073/pnas.93.20.11274
  11. Jonak, C., Okresz, L., Bogre, L., and Hirt, H. (2002). Complexity, cross talk and integration of plant MAP kinase signaling. Curr. Opin. Plant Biol. 5, 415-424 https://doi.org/10.1016/S1369-5266(02)00285-6
  12. Lee, M.O., Cho, K., Kim, S.H., Jeong, S.H., Kim, J.A., Jung, Y.H., Shim, J., Shibato, J., Rakwal, R., Tamogami, S., et al. (2008). Novel rice OsSIPK is a multiple stress responsive MAPK family member showing rhythmic expression at mRNA level. Planta 227, 981-990 https://doi.org/10.1007/s00425-007-0672-2
  13. Link, V., Hofmann, M.G., Sinha, A.K., Ehness, R., Strnad, M., and Roitsch, T. (2002a). Biochemical evidence for the activation of distinct subsets of mitogen-activated protein kinases by voltage and defense-related stimuli. Plant Physiol. 128, 271-281 https://doi.org/10.1104/pp.010569
  14. Link, V., Sinha, A.K., Vashista, P., Hofmann, M.G., Proels, R.K., Ehness, R., and Roitsch, T. (2002b). A heat-activated MAP kinase in tomato: a possible regulator of the heat stress response. FEBS Lett. 531, 179-183 https://doi.org/10.1016/S0014-5793(02)03498-1
  15. Mishra, N.S., Tuteja, R., and Tuteja, N. (2006). Signaling through MAP kinase networks in plants. Arch. Biochem. Biophys. 452, 55-68
  16. Mittag, M., Kiaulehn, S., and Johnson, C.H. (2005). The circadian clock in Chlamydomonas reinhardtii. What is it for? What is it similar to? Plant Physiol. 137, 399-409 https://doi.org/10.1104/pp.104.052415
  17. Nakagami, H., Pitzschke, A., and Hirt, H. (2005). Emerging MAP kinase pathways in plant stress signaling. Trends Plant Sci. 10, 339-346 https://doi.org/10.1016/j.tplants.2005.05.009
  18. Obrietan, K., Impey, S., and Storm, D.R. (1998). Light and circadian rhythmicity regulate MAP kinase activation in the suprachiasmatic nuclei. Nat. Neurosci. 1, 693-700 https://doi.org/10.1038/3695
  19. Pittendrigh, C.S. (1993).Temporal organization: reflections of a Darwinian clock-watcher. Annu. Rev. Physiol. 55, 16-54
  20. Reuter, C.W., Catling, A.D., and Weber, M.J. (1995). Immune complex kinase assays for mitogen-activated protein kinase and MEK. Meth. Enzymol. 55, 245-256
  21. Sanada, K., Hayashi, Y., Harada, Y., Okano, T., and Fukada, F. (2000). Role of circadian activation of mitogen activated protein kinase in chick pineal clock oscillation. J. Neurosci. 20, 986-991
  22. Sangwan, V., Orvar, B.L., Beyerly, J., Hirt, H., and Dhindsa, R.S. (2002). Opposite changes in membrane fluidity mimic cold and heat stress activation of distinct plant MAP kinase pathways. Plant J. 3, 629-638
  23. Schaffer, R., Landgraf, J., Accerbi, M., Simon, V., Larson, M., and Wisman, E. (2001). Microarray analysis of diurnal and circadian regulated genes in Arabidopsis. Plant Cell 13, 113-123 https://doi.org/10.2307/3871157
  24. Tena, G., Asai, T., Chiu, W.L., and Sheen, J. (2001). Plant Mitogenactivated protein kinase signaling cascades. Curr. Opin. Plant Biol. 74, 392-400
  25. Zhang, S., and Klessig, D.F. (1997). Salicylic acid activates a 48-kD MAPK kinase in tobacco. Plant Cell 9, 809-824 https://doi.org/10.2307/3870434
  26. Zhang, T., Liu, Y., Yang, T., Zhang, L., Xu, S., Xue, L., and An, L. (2006). Diverse signals converge at MAPK cascades in plant. Plant Physiol. Biochem. 44, 274-283 https://doi.org/10.1016/j.plaphy.2006.06.004

Cited by

  1. Rice WNK1 is regulated by abiotic stress and involved in internal circadian rhythm vol.6, pp.3, 2009, https://doi.org/10.4161/psb.6.3.13063
  2. Flowering time and transcriptome variation in Capsella bursa‐pastoris (Brassicaceae) vol.194, pp.3, 2009, https://doi.org/10.1111/j.1469-8137.2012.04101.x
  3. CrMPK3, a mitogen activated protein kinase from Catharanthus roseus and its possible role in stress induced biosynthesis of monoterpenoid indole alkaloids vol.12, pp.None, 2009, https://doi.org/10.1186/1471-2229-12-134
  4. Functional Involvement of a Mitogen Activated Protein Kinase Module, OsMKK3-OsMPK7-OsWRK30 in Mediating Resistance against Xanthomonas oryzae in Rice vol.6, pp.None, 2009, https://doi.org/10.1038/srep37974
  5. WRKY Transcription Factor Response to High-Temperature Stress vol.10, pp.10, 2009, https://doi.org/10.3390/plants10102211