DOI QR코드

DOI QR Code

The expanding reach of the GAL4/UAS system into the behavioral neurobiology of Drosophila

  • Jones, Walton D. (Department of Biological Sciences, KAIST)
  • Published : 2009.11.30

Abstract

Our understanding of the relationships between genes, brains, and behaviors has changed a lot since the first behavioral mutants were isolated in the fly bottles of the Benzer lab at Caltech (1), but Drosophila is still an excellent model system for studying the neurobiology of behavior. Recent advances provide an unprecedented level of control over fly neural circuits. Efforts are underway to add to existing GAL4-driver lines that permit exogenous expression of genetic tools in small populations of neurons. Combining these driver lines with a variety of inducible UAS lines permits the visualization of neuronal morphology, connectivity, and activity. These driver lines also make it possible to specifically ablate, inhibit, or activate subsets of neurons and assess their roles in the generation of behavioral responses. Here, I will briefly review the extensive arsenal now available to drosophilists for investigating the neuronal control of behavior.

Keywords

References

  1. Benzer, S. (1967) Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc. Natl. Acad. Sci. U.S.A. 58, 1112-1119 https://doi.org/10.1073/pnas.58.3.1112
  2. Heisenberg, M. (1997) Genetic approaches to neuroethology. BioEssays 19, 1065-1073 https://doi.org/10.1002/bies.950191205
  3. Pflugfelder, G. O. (1998) Genetic lesions in Drosophila behavioural mutants. Behav. Brain Res. 95, 3-15 https://doi.org/10.1016/S0166-4328(97)00204-0
  4. Baker, B. S., Taylor, B. J. and Hall, J. C. (2001) Are complex behaviors specified by dedicated regulatory genes? Reasoning from Drosophila. Cell 105, 13-24 https://doi.org/10.1016/S0092-8674(01)00293-8
  5. Olsen, S. R. and Wilson, R. I. (2008) Cracking neural circuits in a tiny brain: new approaches for understanding the neural circuitry of Drosophila. Trends Neurosci. 31, 512-520 https://doi.org/10.1016/j.tins.2008.07.006
  6. Luo, L., Callaway, E. M. and Svoboda, K. (2008) Genetic dissection of neural circuits. Neuron 57, 634-660 https://doi.org/10.1016/j.neuron.2008.01.002
  7. Brand, A. H. and Perrimon, N. (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118, 401-415
  8. Brand, A. H. and Dormand, E. L. (1995) The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Curr. Opin. Neurobiol. 5, 572-578 https://doi.org/10.1016/0959-4388(95)80061-1
  9. Ito, K., Urban, J. and Technau, G. M. (1995) Distribution, classification, and development of Drosophila glial cells in the late embryonic and early larval ventral nerve cord. Roux's Arch. Dev. Biol. 204, 284-307 https://doi.org/10.1007/BF02179499
  10. Yang, M. Y., Armstrong, J. D., Vilinsky, I., Strausfeld, N. J. and Kaiser, K. (1995) Subdivision of the Drosophila mushroom bodies by enhancer-trap expression patterns. Neuron 15, 45-54 https://doi.org/10.1016/0896-6273(95)90063-2
  11. Pfeiffer, B. D., Jenett, A., Hammonds, A. S., Ngo, T. T., Misra, S., Murphy, C., Scully, A., Carlson, J. W., Wan, K. H., Laverty, T. R., Mungall, C., Svirskas, R., Kadonaga, J. T., Doe, C. Q., Eisen, M. B., Celniker, S. E. and Rubin, G. M. (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc. Natl. Acad. Sci. U.S.A. 105, 9715-9720 https://doi.org/10.1073/pnas.0803697105
  12. Lee, T. and Luo, L. (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22, 451-461 https://doi.org/10.1016/S0896-6273(00)80701-1
  13. Brand, A. (1995) GFP in Drosophila. Trends Genet 11, 324-325 https://doi.org/10.1016/S0168-9525(00)89091-5
  14. Williams, D. W., Tyrer, M. and Shepherd, D. (2000) Tau and tau reporters disrupt central projections of sensory neurons in Drosophila. J. Comp. Neurol. 428, 630-640 https://doi.org/10.1002/1096-9861(20001225)428:4<630::AID-CNE4>3.0.CO;2-X
  15. Ito, K., Suzuki, K., Estes, P., Ramaswami, M., Yamamoto, D. and Strausfeld, N. J. (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem. 5, 52-77
  16. Fishilevich, E. and Vosshall, L. B. (2005) Genetic and functional subdivision of the Drosophila antennal lobe. Curr. Biol. 15, 1548-1553 https://doi.org/10.1016/j.cub.2005.07.066
  17. Couto, A., Alenius, M. and Dickson, B. J. (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr. Biol. 15, 1535-1547 https://doi.org/10.1016/j.cub.2005.07.034
  18. White, J., Southgate, E., Thomson, J. N. and Brenner, S. (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 314, 1-340 https://doi.org/10.1098/rstb.1986.0056
  19. Macosko, E. Z., Pokala, N., Feinberg, E. H., Chalasani, S. H., Butcher, R. A., Clardy, J. and Bargmann, C. I. (2009) A hub-and-spoke circuit drives pheromone attraction and social behaviour in C. elegans. Nature 458, 1171-1175 https://doi.org/10.1038/nature07886
  20. Briggman, K. L. and Denk, W. (2006) Towards neural circuit reconstruction with volume electron microscopy techniques. Curr. Opin. Neurobiol. 16, 562-570 https://doi.org/10.1016/j.conb.2006.08.010
  21. Livet, J., Weissman, T. A., Kang, H., Draft, R. W., Lu, J., Bennis, R. A., Sanes, J. R. and Lichtman, J. W. (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450, 56-62 https://doi.org/10.1038/nature06293
  22. Lichtman, J. W., Livet, J. and Sanes, J. R. (2008) A technicolour approach to the connectome. Nat. Rev. Neurosci. 9, 417-422 https://doi.org/10.1038/nrn2391
  23. Stepanyants, A. and Chklovskii, D. B. (2005) Neurogeometry and potential synaptic connectivity. Trends Neurosci. 28, 387-394 https://doi.org/10.1016/j.tins.2005.05.006
  24. Ramaekers, A., Magnenat, E., Marin, E. C., Gendre, N., Jefferis, G. S., Luo, L. and Stocker, R. F. (2005) Glomerular maps without cellular redundancy at successive levels of the Drosophila larval olfactory circuit. Curr. Biol. 15, 982-992 https://doi.org/10.1016/j.cub.2005.04.032
  25. Patterson, G. H. and Lippincott-Schwartz, J. (2002) A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873-1877 https://doi.org/10.1126/science.1074952
  26. Datta, S. R., Vasconcelos, M. L., Ruta, V., Luo, S., Wong, A., Demir, E., Flores, J., Balonze, K., Dickson, B. J. and Axel, R. (2008) The Drosophila pheromone cVA activates a sexually dimorphic neural circuit. Nature 452, 473-477 https://doi.org/10.1038/nature06808
  27. Callaway, E. M. (2008) Transneuronal circuit tracing with neurotropic viruses. Curr. Opin. Neurobiol. 18, 617-623 https://doi.org/10.1016/j.conb.2009.03.007
  28. Yoshihara, Y., Mizuno, T., Nakahira, M., Kawasaki, M., Watanabe, Y., Kagamiyama, H., Jishage, K., Ueda, O., Suzuki, H., Tabuchi, K., Sawamoto, K., Okano, H., Noda, T. and Mori, K. (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22, 33-41 https://doi.org/10.1016/S0896-6273(00)80676-5
  29. Tabuchi, K., Sawamoto, K., Suzuki, E., Ozaki, K., Sone, M., Hama, C., Tanifuji-Morimoto, T., Yuasa, Y., Yoshihara, Y., Nose, A. and Okano, H. (2000) GAL4/UAS-WGA system as a powerful tool for tracing Drosophila transsynaptic neural pathways. J. Neurosci. Res. 59, 94-99 https://doi.org/10.1002/(SICI)1097-4547(20000101)59:1<94::AID-JNR11>3.0.CO;2-Q
  30. Tanaka, N. K., Awasaki, T., Shimada, T. and Ito, K. (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr. Biol. 14, 449-457 https://doi.org/10.1016/j.cub.2004.03.006
  31. Gordon, M. D. and Scott, K. (2009) Motor control in a Drosophila taste circuit. Neuron 61, 373-384 https://doi.org/10.1016/j.neuron.2008.12.033
  32. Feinberg, E. H., Vanhoven, M. K., Bendesky, A., Wang, G., Fetter, R. D., Shen, K. and Bargmann, C. I. (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57, 353-363 https://doi.org/10.1016/j.neuron.2007.11.030
  33. Lai, S. L. and Lee, T. (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat. Neurosci. 9, 703-709 https://doi.org/10.1038/nn1681
  34. Gouwens, N. W. and Wilson, R. I. (2009) Signal propagation in Drosophila central neurons. J. Neurosci. 29, 6239-6249 https://doi.org/10.1523/JNEUROSCI.0764-09.2009
  35. Wilson, R. I., Turner, G. C. and Laurent, G. (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science 303, 366-370 https://doi.org/10.1126/science.1090782
  36. Wang, J. W., Wong, A. M., Flores, J., Vosshall, L. B. and Axel, R. (2003) Two-photon calcium imaging reveals an odor-evoked map of activity in the fly brain. Cell 112, 271-282 https://doi.org/10.1016/S0092-8674(03)00004-7
  37. Nakai, J., Ohkura, M. and Imoto, K. (2001) A high signalto-noise Ca(2+) probe composed of a single green fluorescent protein. Nat. Biotechnol. 19, 137-141 https://doi.org/10.1038/84397
  38. Reiff, D. F., Ihring, A., Guerrero, G., Isacoff, E., Joesch, M., Nakai, J. and Borst, A. (2005) In vivo performance of genetically encoded indicators of neural activity in flies. J. Neurosci. 25, 4766-4778 https://doi.org/10.1523/JNEUROSCI.4900-04.2005
  39. Jayaraman, V. and Laurent, G. (2007) Evaluating a genetically encoded optical sensor of neural activity using electrophysiology in intact adult fruit flies. Front Neural. Circuits. 1, 3
  40. Miesenb$\ddot{o}$ck, G., De Angelis, D. A. and Rothman, J. E. (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192-195 https://doi.org/10.1038/28190
  41. Ng, M., Roorda, R. D., Lima, S. Q., Zemelman, B. V., Morcillo, P. and Miesenbock, G. (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36, 463-474 https://doi.org/10.1016/S0896-6273(02)00975-3
  42. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. and Miesenböck, G. (2007) Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601-612 https://doi.org/10.1016/j.cell.2006.12.034
  43. Ignell, R., Root, C. M., Birse, R. T., Wang, J. W., Nassel, D. R. and Winther, A. M. (2009) Presynaptic peptidergic modulation of olfactory receptor neurons in Drosophila. PNAS 106, 13070-13075 https://doi.org/10.1073/pnas.0813004106
  44. Zemelman, B. V. and Miesenbock, G. (2001) Genetic schemes and schemata in neurophysiology. Curr. Opin. Neurobiol. 11, 409-414 https://doi.org/10.1016/S0959-4388(00)00227-0
  45. Kuner, T. and Augustine, G. J. (2000) A genetically encoded ratiometric indicator for chloride: capturing chloride transients in cultured hippocampal neurons. Neuron 27, 447-459 https://doi.org/10.1016/S0896-6273(00)00056-8
  46. Berglund, K., Schleich, W., Krieger, P., Loo, L. S., Wang, D., Cant, N. B., Feng, G., Augustine, G. J. and Kuner, T. (2006) Imaging synaptic inhibition in transgenic mice expressing the chloride indicator, Clomeleon. Brain Cell Biology 35, 207-228 https://doi.org/10.1007/s11068-008-9019-6
  47. Siegel, M. S. and Isacoff, E. Y. (1997) A genetically en coded optical probe of membrane voltage. Neuron 19, 735-741 https://doi.org/10.1016/S0896-6273(00)80955-1
  48. Ataka, K. and Pieribone, V. A. (2002) A genetically targetable fluorescent probe of channel gating with rapid kinetics. Biophys. J. 82, 509-516 https://doi.org/10.1016/S0006-3495(02)75415-5
  49. Chanda, B., Blunck, R., Faria, L. C., Schweizer, F. E., Mody, I. and Bezanilla, F. (2005) A hybrid approach to measuring electrical activity in genetically specified neurons. Nat. Neurosci. 8, 1619-1626 https://doi.org/10.1038/nn1558
  50. Sjulson, L. and Miesenbock, G. (2007) Optical recording of action potentials and other discrete physiological events: a perspective from signal detection theory. Physiology (Bethesda, Md) 22, 47-55 https://doi.org/10.1152/physiol.00036.2006
  51. Sjulson, L. and Miesenbock, G. (2008) Rational optimization and imaging in vivo of a genetically encoded optical voltage reporter. J. Neurosci. 28, 5582-5593 https://doi.org/10.1523/JNEUROSCI.0055-08.2008
  52. McNabb, S. L., Baker, J. D., Agapite, J., Steller, H., Riddiford, L. M. and Truman, J. W. (1997) Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron 19, 813-823 https://doi.org/10.1016/S0896-6273(00)80963-0
  53. Kunes, S. and Steller, H. (1991) Ablation of Drosophila photoreceptor cells by conditional expression of a toxin gene. Genes Dev. 5, 970-983 https://doi.org/10.1101/gad.5.6.970
  54. Bellen, H. J., D'Evelyn, D., Harvey, M. and Elledge, S. J. (1992) Isolation of temperature-sensitive diphtheria toxins in yeast and their effects on Drosophila cells. Development 114, 787-796
  55. Johns, D. C., Marx, R., Mains, R. E., O'Rourke, B. and Marban, E. (1999) Inducible genetic suppression of neuronal excitability. J. Neurosci. 19, 1691-1697
  56. Baines, R. A., Uhler, J. P., Thompson, A., Sweeney, S. T. and Bate, M. (2001) Altered electrical properties in Drosophila neurons developing without synaptic transmission. J. Neurosci. 21, 1523-1531
  57. Sweeney, S. T., Broadie, K., Keane, J., Niemann, H. and O'Kane, C. J. (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14, 341-351 https://doi.org/10.1016/0896-6273(95)90290-2
  58. Kamikouchi, A., Inagaki, H. K., Effertz, T., Hendrich, O., Fiala, A., Gopfert, M. C. and Ito, K. (2009) The neural basis of Drosophila gravity-sensing and hearing. Nature 458, 165-171 https://doi.org/10.1038/nature07810
  59. Kitamoto, T. (2001) Conditional modification of behavior in Drosophila by targeted expression of a temperaturesensitive shibire allele in defined neurons. J. Neurobiol. 47, 81-92
  60. Suh, G. S., Wong, A. M., Hergarden, A. C., Wang, J. W., Simon, A. F., Benzer, S., Axel, R. and Anderson, D. J. (2004) A single population of olfactory sensory neurons mediates an innate avoidance behaviour in Drosophila. Nature 431, 854-859 https://doi.org/10.1038/nature02980
  61. Nitabach, M. N., Wu, Y., Sheeba, V., Lemon, W. C., Strumbos, J., Zelensky, P. K., White, B. H. and Holmes, T. C. (2006) Electrical hyperexcitation of lateral ventral pacemaker neurons desynchronizes downstream circadian oscillators in the fly circadian circuit and induces multiple behavioral periods. J. Neurosci. 26, 479-489 https://doi.org/10.1523/JNEUROSCI.3915-05.2006
  62. Al-Anzi, B., Sapin, V., Waters, C., Zinn, K., Wyman, R. J. and Benzer, S. (2009) Obesity-blocking neurons in Drosophila. Neuron 63, 329-341 https://doi.org/10.1016/j.neuron.2009.07.021
  63. Marella, S., Fischler, W., Kong, P., Asgarian, S., Rueckert, E. and Scott, K. (2006) Imaging taste responses in the fly brain reveals a functional map of taste category and behavior. Neuron 49, 285-295 https://doi.org/10.1016/j.neuron.2005.11.037
  64. Lima, S. Q. and Miesenbock, G. (2005) Remote control of behavior through genetically targeted photostimulation of neurons. Cell 121, 141-152 https://doi.org/10.1016/j.cell.2005.02.004
  65. Clyne, J. D. and Miesenbock, G. (2008) Sex-specific control and tuning of the pattern generator for courtship song in Drosophila. Cell 133, 354-363 https://doi.org/10.1016/j.cell.2008.01.050
  66. Zhang, W., Ge, W. and Wang, Z. (2007) A toolbox for light control of Drosophila behaviors through Channelrhodopsin 2-mediated photoactivation of targeted neurons. Eur. J. Neurosci. 26, 2405-2416 https://doi.org/10.1111/j.1460-9568.2007.05862.x
  67. Schroll, C., Riemensperger, T., Bucher, D., Ehmer, J., Voller, T., Erbguth, K., Gerber, B., Hendel, T., Nagel, G., Buchner, E. and Fiala, A. (2006) Light-induced activation of distinct modulatory neurons triggers appetitive or aversive learning in Drosophila larvae. Curr. Biol. 16, 1741-1747 https://doi.org/10.1016/j.cub.2006.07.023
  68. Suh, G. S., Ben-Tabou de Leon, S., Tanimoto, H., Fiala, A., Benzer, S. and Anderson, D. J. (2007) Light activation of an innate olfactory avoidance response in Drosophila. Curr. Biol. 17, 905-908 https://doi.org/10.1016/j.cub.2007.04.046
  69. Hwang, R. Y., Zhong, L., Xu, Y., Johnson, T., Zhang, F., Deisseroth, K. and Tracey, W. D. (2007) Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17, 2105-2116 https://doi.org/10.1016/j.cub.2007.11.029

Cited by

  1. Genetic analysis of mosquito detection of humans vol.20, 2017, https://doi.org/10.1016/j.cois.2017.03.003
  2. Influence of tissue-specific superoxide dismutase gene expression in brain cells on Drosophila melanogaster sensitivity to oxidative stress and viability vol.49, pp.2, 2015, https://doi.org/10.3103/S0095452715020127
  3. A Versatile Method for Cell-Specific Profiling of Translated mRNAs in Drosophila vol.7, pp.7, 2012, https://doi.org/10.1371/journal.pone.0040276
  4. Gene-specific cell labeling using MiMIC transposons vol.43, pp.8, 2015, https://doi.org/10.1093/nar/gkv113
  5. Of Toasters and Molecular Ticker Tapes vol.7, pp.12, 2011, https://doi.org/10.1371/journal.pcbi.1002291
  6. Modulatory Action by the Serotonergic System: Behavior and Neurophysiology inDrosophila melanogaster vol.2016, 2016, https://doi.org/10.1155/2016/7291438
  7. Modeling human neurodegenerative diseases in transgenic systems vol.131, pp.4, 2012, https://doi.org/10.1007/s00439-011-1119-1
  8. The genetics of calcium signaling in Drosophila melanogaster vol.1820, pp.8, 2012, https://doi.org/10.1016/j.bbagen.2011.11.002
  9. concentrations vol.4, pp.3, 2016, https://doi.org/10.14814/phy2.12695
  10. Using a Screen for Wing Damage vol.208, pp.1, 2017, https://doi.org/10.1534/genetics.117.300292