Treatment Characteristics of Plating Wastewater Containing Freecyanide, Cyanide Complexes and Heavy Metals (I)

도금폐수내 유리시안과 착염시안 및 중금속의 처리특성 (I)

  • Jung, Yeon-Hoon (Department of Energy and Environmental Engineering, The Graduate School of Energy and Environment Seoul National University of Technology) ;
  • Lee, Soo-Koo (Department of Environmental Engineering, Seoul National University of Technology)
  • 정연훈 (서울산업대학교 에너지환경대학원 에너지환경공학과) ;
  • 이수구 (서울산업대학교 환경공학과)
  • Received : 2009.10.15
  • Accepted : 2009.11.23
  • Published : 2009.11.30

Abstract

The mean pH of wastewater discharged from the plating process is 2, so a less amount of alkali is required to raise pH 2 to 5. In addition, if sodium sulfite is used to raise pH 5 to 9 in the secondary treatment, caustic soda or slaked lime is not necessary or only a small amount is necessary because sodium sulfite is alkali. Thus, it is considered desirable to use only $FeSO_4{\cdot}7H_2O$ in the primary treatment. At that time, the free cyanide removal rate was highest as around 99.3%, and among heavy metals, Ni showed the highest removal rate as around 92%, but zinc and chrome showed a low removal rate. In addition, the optimal amount of $FeSO_4{\cdot}7H_2O$ was 0.3g/L, at which the cyanide removal rate was highest. Besides, the free cyanide removal rate was highest when pH value was 5. Of cyanide removed in the primary treatment, the largest part was removed through the precipitation of ferric ferrocyanide: $[Fe_4(Fe(CN)_6]_3$, and the rest was precipitated and removed through the production of $Cu_2[Fe(CN)_6]$, $Ni_2[Fe(CN)_6]$, CuCN, etc. Furthermore, it appeared more effective in removing residual cyanide in wastewater to mix $Na_2SO_3$ and $Na_2S_2O_5$ at an optimal ratio and put the mixture than to put them separately, and the optimal weight ratio of $Na_2SO_3$ to $Na_2S_2O_5$ was 1:2, at which the oxidative decomposition of residual cyanide was the most active. However, further research is required on the simultaneous removal of heavy metals such as chrome and zinc.

Keywords

References

  1. 김광진(1985). 산화환원제에 의한 도금폐수의 처리효과에 관한연구. 환경과학대학원 석사학위논문, 한양대학교
  2. 김효진, 조훈제, 박은주, 정진호(2005). 도금폐수의 독성원인물질 확인. 추계학술발표회 논문집, 대한상하수도학회․한국물환경학회, pp. 312-315
  3. 엄경숙, 송민영, 정재춘, 정용(1987). 수은, 납, 카드뮴, 크롬이온이 송사리(Apiochilus latipes)에 미치는 독성에 관한 연구. J. KS WPRC., 3(2), pp. 53-62
  4. 이종철, 강익중(2007). 아연백법 및 공침공정을 이용한 복합중금속-시안착염 폐수의 현장처리(I). 대한환경공학회지,29(12), pp. 13981-1389
  5. 이찬기, 류재근(1985). 유해중금속 산업폐수처리의 기술개발에 관한 연구. J. KOR. AT. OLLUT. ES. ONTR, 1(1), pp.67-74
  6. 이현준, 김효진, 오현주, 조기종, 김정규, 정진호(2007). 폐광산 배수와 퇴적물의 중금속 오염과 생물독성 평가. 수질보전 한국물환경학회지, 23(2), pp. 287-293
  7. 정원중, 조순행(1999). 중금속-시안 착염을 함유한 도금폐수의 처리. 대한환경공학회지, 21(6), pp. 1095-1107
  8. 최원석, 박기학(1997). 과산화수소를 이용한 시안화나트륨 및 시안화합물을 함유한 도금폐수의 처리. 환경관리학회지, 3, pp. 35-47
  9. 한만석, 탁용석, 이충영, 남종우(1998). 전해공정에 의한 도금폐수내의 시안분해. 대한환경공학회지, 20(6), pp. 875-884
  10. 환경부(1997). 수질관리교재, 환경보전협회
  11. Barriga-Ordonez, F., Nava-Alonso, F., and Uribe-Salas, A.(2006). Cyanide oxidation by ozone in a steady-state flow bubble column. Minerals Engineering, 19, pp. 117-122 https://doi.org/10.1016/j.mineng.2005.09.001
  12. Dash, R. R., Balomajumder, C., and Kumar, A. (2008). Treatement of metal cyanide bearing wastewater by simultaneous adsorption and biodegradation (SAB). J. Hazard. Mater.,152, pp. 387-396 https://doi.org/10.1016/j.jhazmat.2007.07.009
  13. Lin Niu, 노병호, 정철, 이용일(2000). 도금폐수 중의 시안착 이온의 전기화학적 분해 및 아연회수에 관한연구. 한국분석과학회지, 13(6), pp. 699-704
  14. Patterson, J. W. (1985). Industrial Wastewater Treatment Technology,2nd Ed., Butterworth Publishers, Boston
  15. Sarla, M., Pandit, M., Tyagi, D. K., and Kapoor, J. C. (2004).Oxidation of cyanide in aqueous solution by chemical and photochemical process. J. of Hazardous Materials, B116,pp. 49-56 https://doi.org/10.1016/j.jhazmat.2004.06.035
  16. Shen, C. Y. and Nordquist, P. E. R. Jr. (1974). Cyanide removal from aqueous waste by polymerization. Ind. Eng.Chem. Prod. Res. Dev., 13(1), pp. 70-75 https://doi.org/10.1021/i360049a014
  17. Torphy, M. F. (1979). Electroplating and cyanide wastes. J. of WPCF, 51(6), pp. 1399-1401
  18. Torphy, M. F. and Runke, H. M. (1978). Electroplating and cyanide wastes. J. of WPCF, Literature Review, 50(6), pp.1270-1277
  19. Yazich, E. Y., Deveci, H., and Alp, I. (2009). Treatment of cyanide effluents by oxidation and adsorption in batch and column studies. J. Hazard. Mater., 166, pp. 1362-1366 https://doi.org/10.1016/j.jhazmat.2008.12.050