DOI QR코드

DOI QR Code

Indium Nanowire Growth on Si (001) Surface Using Density Functional Theory

Density Functional Theory를 이용한 Si (001) 표면 위의 In 나노선 성장 연구

  • Kim, Dae-Hyun (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Kim, Dae-Hee (Department of Materials Engineering, Korea University of Technology and Education) ;
  • Seo, Hwa-Il (School of Information Technology, Korea University of Technology and Education) ;
  • Kim, Yeong-Cheol (Department of Materials Engineering, Korea University of Technology and Education)
  • 김대현 (한국기술교육대학교, 신소재공학과) ;
  • 김대희 (한국기술교육대학교, 신소재공학과) ;
  • 서화일 (한국기술교육대학교 정보기술공학부) ;
  • 김영철 (한국기술교육대학교, 신소재공학과)
  • Published : 2009.03.27

Abstract

Density functional theory was utilized to investigate the growth of an indium nanowire on a Si (001) buckled surface. A site between the edge of two Si dimers is most favorable when the first In atom is adsorbed on the surface at an adsorption energy level of 2.26 eV. The energy barriers for migration from other sites to the most favorable site are low. When the second In atom is adsorbed next to the first In atom to form an In dimer perpendicular to the Si dimer row, the adsorption energy is the highest among all adsorption sites. The third In atom prefers either of the sites next to the In dimer along the In dimer direction. The fourth In atom exhibited the same tendency showed by the second atom. The second and fourth In adsorption energy levels are higher than the first and third levels as the In atoms consume the third valence electron by forming In dimers. Therefore, the In nanowire grows perpendicular to the Si dimer row on the Si (001) surface, as it satisfies the bonding of the three valence electrons of the In atoms.

Keywords

References

  1. P. Kluth, Q.-T. Zhao, S. Winnerl, S. Lenk and S. Mantl, Appl. Phys. Lett., 79, 824 (2001) https://doi.org/10.1063/1.1390318
  2. J. Nogami, B. Z. Liu, M. V. Katkov, C. Ohbuchi and N. O. Birge, Phys. Rev. B, 63, 233305 (2001) https://doi.org/10.1103/PhysRevB.63.233305
  3. G. Y. Tseng and C. Ellenbogen, Science, 294, 1293 (2001) https://doi.org/10.1126/science.1066920
  4. P. Kocan, L. Jurczyszyn, P. Sobotik and I. Ost'adal, Phys. Rev. B, 77, 113301 (2008) https://doi.org/10.1103/PhysRevB.77.113301
  5. J. Nogami, A. A. Baski and C. F. Quate, Phys. Rev. B, 44, 1415 (1991) https://doi.org/10.1103/PhysRevB.44.1415
  6. Z. C. Dong, D. Fujita and H. Nejoh, Phys. Rev. B, 63, 115402 (2001) https://doi.org/10.1103/PhysRevB.63.115402
  7. J. R. Ahn, P. G. Kang, J. H. Byun and H. W. Yeom, Phys. Rev. B, 77, 035401 (2008) https://doi.org/10.1103/PhysRevB.77.035401
  8. M. M. R. Evans and J. Nogami, Phys. Rev. B, 59, 7644 (1999) https://doi.org/10.1103/PhysRevB.59.7644
  9. G. Brocks, P. J. Kelly and R. Car, Phys. Rev. Lett., 70, 2786 (1993) https://doi.org/10.1103/PhysRevLett.70.2786
  10. G. Kresse and J. Hafner, Phys. Rev. B, 47, 558 (1993) https://doi.org/10.1103/PhysRevB.47.558
  11. G. Kresse and J. Furthüller, Comput. Mat. Sci., 6, 15 (1996) https://doi.org/10.1016/0927-0256(96)00008-0
  12. G. Kresse and J. Furthuller, Phys. Rev. B, 54, 11169 (1996) https://doi.org/10.1103/PhysRevB.54.11169
  13. G. Kresse and D. Joubert, Phys. Rev. B, 59, 1758 (1999) https://doi.org/10.1103/PhysRevB.59.1758
  14. D. Vanderbilt, Phys. Rev. B, 41, R7892 (1990) https://doi.org/10.1103/PhysRevB.41.7892
  15. D. M. Wood and A. Zunger, J. Phys. A, 18, 1343 (1985) https://doi.org/10.1088/0305-4470/18/9/018
  16. P. Pulay, Chem. Phys. Lett., 73, 393 (1980) https://doi.org/10.1016/0009-2614(80)80396-4
  17. M. A. Albao, M. M. R. Evans, J. Nogami, D. Zorn, M. S. Gordon and J. W. Evans, Phys. Rev. B, 72, 035426 (2005) https://doi.org/10.1103/PhysRevB.72.035426
  18. K. Momma and F. Izumi, J. Appl. Crystallogr., 41, 653 (2008) https://doi.org/10.1107/S0021889808012016