DOI QR코드

DOI QR Code

음성 향상을 위한 최소값 제어 음성 존재 부정확성의 추적기법

Minima Controlled Speech Presence Uncertainty Tracking Method for Speech Enhancement

  • 이우정 (인하대학교 전자전기공학부) ;
  • 장준혁 (인하대학교 전자전기공학부)
  • 발행 : 2009.10.31

초록

본 논문에서는 최소값 제어 음성 존재 부정확성의 추정기법을 이용한 음성 향상 기법을 제안한다. 기존의 음성 존재 부정확성 추정기법에서는 간단한 a posteriori SNR에 근거하여 프레임, 채널마다 다른 a priori음성 부재 확률값을 결정하여 음성 부재 확률 계산에 적용하였다. 본 논문에서 제안된 알고리즘은 기존 음성 존재 부정확성 추적방법과는 달리 최소값 제어방법을 이용하여 주파수성분별 최소값에 근거한 강인한 a priori음성 부재 확률값 추정방법을 통해 음성 부재 확률에 적용하여 음성을 향상시킨다. 제안된 음성 향상 기법은 ITU-T P.862 perceptual evaluation of speech quality (PESQ)를 이용하여 평가하였고 기존의 음성 존재 부정확성 추적방법보다 향상된 결과를 나타내었다.

In this paper, we propose the minima controlled speech presence uncertainty tracking method to improve a speech enhancement. In the conventional tracking speech presence uncertainty, we propose a method for estimating distinct values of the a priori speech absence probability for different frames and channels. This estimation is inherently based on a posteriori SNR and used in estimating the speech absence probability (SAP). In this paper, we propose a novel estimation of distinct values of the a priori speech absence probability, which is based on minima controlled speech presence uncertainty tracking method, for different frames and channels. Subsequently, estimation is applied to the calculation of speech absence probability for speech enhancement. Performance of the proposed enhancement algorithm is evaluated by ITU-T P. 862 perceptual evaluation of speech quality (PESQ) under various noise environments. We show that the proposed algorithm yields better results compared to the conventional tracking speech presence uncertainty.

키워드

참고문헌

  1. Y. Ephraim and D. Malah, "Speech enhancement using a minimum mean-square error short-time spectral amplitude estimator," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-32, no. 6, pp.1109-1121, 1984 https://doi.org/10.1109/TASSP.1984.1164453
  2. Y. Ephraim and D. Malah, “Speech enhancement using a minimum mean-square error log-spectral amplitude estimator,” IEEE Trans. Acoust., Speech, Signal Process,, vol. ASSP-32, no. 2, pp. 443-445, 1985 https://doi.org/10.1109/TASSP.1985.1164550
  3. S. F. Boll, "Suppression of acoustic noise in speech using spectral subtraction," IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-27, no. 2, pp. 113-120, 1979 https://doi.org/10.1109/TASSP.1979.1163209
  4. R. Martin, "Spectral subtraction based on minimum statistics," in Proc. 7th EUSIPCO'94, Edinburgh, U.K., pp. 1182-1185, Sept. 1994
  5. I. Cohen and B. Berdugo, "Speech enhancement for non-stationary noise environments," Signal Processing, vol. 81, pp. 2403-2418, 2001 https://doi.org/10.1016/S0165-1684(01)00128-1
  6. G. Doblinger, "Computationally efficient speech enhancement by spectral minima tracking in subbands," in Proc. 4th EUROSPEECH'95, Madrid, Spain, pp. 1513-1516, Sept. 1995
  7. J. Meyer, K. U. Simmer and K. D. Kammeyer, “Comparison of one-and two-channel noise-estimation techniques,” in Proc. 5th IWAENC'97, London, U.K., pp. 137-145, Sept. 1997
  8. N. S. Kim and J. H. Chang, "Spectral enhancement based on global soft decision," IEEE Signal Processing Letters, vol. 7, no. 5, pp. 108-110, 2000 https://doi.org/10.1109/97.841154
  9. D. Malah, R. Cox, and A. J. Accardi, “Tracking speech-presence uncertainty to improve speech enhancement in nonstationary noise environments,” in Proc. Int. Conf. Acoustics, Speech, and Signal Processing, Phoenix, AZ, Mar. 1999 https://doi.org/10.1109/ICASSP.1999.759789
  10. I. Cohen and B. Berdugo, "Noise estimation by minima con-trolled recursive averagiong for robust speech enhancement," IEEE Signal Processing Letters, vol. 9, no. 1, pp. 12-15, Jan. 2002 https://doi.org/10.1109/97.988717