DOI QR코드

DOI QR Code

The Detection of PVC based Rhythm Analysis and Beat Matching

리듬분석과 비트매칭을 통한 조기심실수축(PVC) 검출

  • 전홍규 (부산대학교 바이오정보전자공학과) ;
  • 조익성 (부산대학교 바이오정보전자공학과) ;
  • 권혁숭 (부산대학교 바이오메디컬공학과)
  • Published : 2009.11.30

Abstract

Premature ventricular contractions are the most common of all arrhythmias and may cause more serious situation in some patients. Therefore, the detection of this arrhythmia becomes crucial in the early diagnosis and prevention of possible life threatening cardiac diseases. Most of the algorithms detecting PVC reported in literature is not always feasible due to the presence of noise and P wave making the detection difficult, and the process being time consuming and ineffective for real time analysis. To solve this problem, a new approach for the detection of PVC is presented based rhythm analysis and beat matching in this paper. For this purpose, the ECG signals are first processed by the usual preprocessing method and R wave was detected. The algorithm that decides beat type using the rhythm analysis of RR interval and beat matching of QRS width is developed. The performance of R wave and PVC detection is evaluated by using MIT-BIH arrhythmia database. The achieved scores indicate sensitivity of 99.74%, positive predictivity of 99.81% and sensitivity of 93.91%, positive predictivity of 96.48% accuracy respectively for R wave and PVC detection.

조기심실수축(Premature Ventricular Contractions, PVC)은 부정 맥 중 가장 빈번히 나타나는 심장질환으로 위험한 상황으로 발전할 가능성을 가지고 있다. 따라서 이의 검출은 심장질환에 대한 예방과 추후 발생여부에 대한 기초조사로서 매우 중요하다. 지금까지 PVC를 검출하는 많은 방법이 연구되어 왔으나 기존의 방법들은 잡음의 영향을 많이 받고 P파의 존재 유무에 의존적이기 때문에 검출의 정확도가 떨어지며, 처리시간이 많이 소요되기 때문에 실시간 검출에는 많은 어려움이 따른다. 이러한 문제점을 극복하기 위해 본 논문에서는 리듬분석과 비트매칭을 통한 PVC검출 방법을 제안한다. 이를 위해 전처리 과정 후 R 파를 검출하고, RR 간격의 리듬분석과 QRS 폭간격의 비트 매칭을 통해 비트 유형을 결정하는 알고리즘을 개발하였다. 제안한 알고리즘의 R파 및 PVC 검출 성능을 평가하기 위해 MIT-BIH 부정맥 데이터베이스를 사용하였다. 성능평가 결과, R파의 sensitivity는 99.74%, positive predictivity는 99.81%, PVC의 sensitivity는 93.91%, Positive predictivity는 96.48%의 검출 결과를 나타내었다.

Keywords

References

  1. S. F.Wung and B. Drew, "Comparison of 18-lead ECG and selected body surface potential mapping leads in determining maximally deviated ST lead and efficacy in detecting acute myocardial ischemia during coronary occlusion," J. Electrocardiol., vol. 32, pp. 30-37, 1999 https://doi.org/10.1016/S0022-0736(99)90032-8
  2. S. Sangwatanaroj, S. Prechawat, B. Sunsaneewitayakul, S. Sitthisook, P. Tosukhowong, and K. Tungsanga, "New electrocardiographic leads and the procainamide test for the detection of the Brugada sign in sudden unexplained death syndrome survivors and their relatives," Eur. Heart J., vol. 22, no. 24, pp. 2290-2296, 2001 https://doi.org/10.1053/euhj.2001.2691
  3. Awdah AI-Hazimi, Nabil AI-Ama, Ahmad Syiamic, Reem Qosti, and Khidir Abdel-Galil, "Time domain analysis of heart rate variability in diabetic patients with and without autonomic neuropathy," Annals of Saudi Medicine, 22 (5-6), 2002, pp.400-402 https://doi.org/10.5144/0256-4947.2002.400
  4. Beuchee A, Pladys P, Senhadji L, Betremieux P, Carre F. "Beat-to-beat blood pressure variability and patent ductus arteriosus in ventilated, premature infants", PfIugers Arch, 2003, 446:154-160 https://doi.org/10.1007/s00424-002-0961-3
  5. Y. Wang, Y.S. Zhu, N.V. Thakor, and Y.H. Xu, "A Short-Time Multifractal Approach for Arrhythmia Detection Based on Fuzzy Neural Network", IEEE Trans. Biomed. Eng., vol. 48 (9), pp. 989-995, 2001 https://doi.org/10.1109/10.942588
  6. A.D. Coast, R. M. Stem, G.G. Cano, and S. A. Briller, "An approach to cardiac arrhythmia analysis using hidden Markov models", IEEE Trans. Biomed. Eng., vol. 37, pp. 826-835, 1990 https://doi.org/10.1109/10.58593
  7. Thong, T., J. McNames, M. Aboy, B. Goldstein, "Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes", IEEE Trans. On Biomed. Eng., 51(4), pp. 561-569, 2004 https://doi.org/10.1109/TBME.2003.821030
  8. Takayanagi T, et al.: Distribution patterns of bigeminy and trigeminy discriminate two types of ventricular parasystole
  9. Takayanagi T, Kamishirado H, Iwasaki Y, Fujito T, Sakai Y, Inoue T, Hayashi T, Morooka S: Cyclic bursts of ventricular premature contractions of more than one minute intervals. Jpn Heart J 1999; 40:135-144 https://doi.org/10.1536/jhj.40.135
  10. Throne, R., J. Windle, R. Easley and D. Wilber; "Scatter Diagram Analysis: A New Teclmique for Discriminating Ventricular Tachyarrhythmias", PACE, vol. 17, 1267-1275, 1994
  11. Goovaerts H.G. et al.- A Digital QRS Detector Based on the Principle of Contour Limiting, IEEE trans. BME. March. 1976
  12. Okada M.- A Digital Filter for the QRS Complex Detection, IEEE, TBME, Vol. 26, No 12, Dec. 1979
  13. Pan J. and J. Tompkins, "A Real-Time QRS Detection Algorithm", IEEE Transactions on Biomedical Engineering, 32, 230-236, 1985 https://doi.org/10.1109/TBME.1985.325532
  14. S. Gaitanidou, S. Rokas, C. Pamboucas, D. Actipis, S. Chatzidou, J. Darsinos, S. Stamatelopoulos, and S. Moulopoulos, "The RR interval distribution pattern as a predictive factor of the outcome of atrioventricular conduction modification in patients with atrial fibrillation," J. Amer. Coll. Cardiol., vol. 31, no. 2, pp. 333A-334A, Feb. 1998 https://doi.org/10.1016/S0735-1097(98)82098-6
  15. P. de Chazal and R. Reilly. A patient-adapting heartbeat classifier using ecg morphology and heartbeat interval features. IEEE Transactions on Biomedical Engineering, 53(12): 2535-2543,2006 https://doi.org/10.1109/TBME.2006.883802