DOI QR코드

DOI QR Code

유기산 완충용액의 불소농도가 상아질의 재광화에 미치는 영향

THE EFFECTS OF THE FLUORIDE CONCENTRATION OF ACIDULATED BUFFER SOLUTIONS ON DENTINE REMINERALIZATION

  • 한원섭 (연세대학교 치과대학 치과보존학교실) ;
  • 이찬영 (연세대학교 치과대학 치과보존학교실)
  • Han, Won-Sub (Department of Conservative Dentistry, Yonsei University) ;
  • Lee, Chan-Young (Department of Conservative Dentistry, Yonsei University)
  • 발행 : 2009.11.30

초록

상아질의 재광화에 적당한 불소농도에 대하여는 서로 다른 주장이 존재하므로 불소가 병소 내 무기질의 분포와 수산화인회석 결정성장에 미치는 영향을 분석하기 위하여 이 연구를 시행하였다. 치아절편을 유산완충 탈회용액에 넣어 인공 치아우식을 형성한 후, 재광화 효과를 관찰하기 위해 불소농도가 각각 1, 2, 4 ppm인 유산완충 재광화용액에서 7일간 유지시켰다. 우식 진행과 재광화 양상을 관찰하기 위하여 탈회 2일, 재광화 7일 등 총 9일간 편광현미경으로 관찰하였으며 수산화인회석결정의 변화를 관찰하기 위하여서는 정상상아질, 탈회 2일군, 재광화 7일군의 파절시편을 주사전자현미경으로 관찰하여 다음과 같은 결과를 얻었다. 1. 모든 군에서 병소상부의 무기질침착과 병소하부의 무기질소실이 동시에 일어났다. 2. 불소농도가 증가하면 우식 병소의 무기질침착이 증가하였다. 3. 수산화인회석결정이 커졌다. 본실험의 결과에 의하면, 상아질의 우식과 재광화과정이 단순히 탈회 또는 재광화만이 독립적으로 일어나는 과정이 아니고 이 두 과정이 동시에 일어나는 동력학적인 과정이다. 또한 불소농도의 증가와 함께 재광화 양상도 증가하였고, 이러한 재광화는 유기기질망 주위의 수산화인회석결정을 중심으로 진행되었다.

The aim of this vitro-study is to evaluate the effects of fluoride on remineralization of artificial dentine caries. 10 sound permanent premolars, which were extracted for orthodontic reason within 1 week. were used for this study. Artificial dentine caries was created by using a partially saturated buffer solution for 2 days with grounded thin specimens and fractured whole-body specimens. Remineralization solutions with three different fluoride concentration (1 ppm. 2 ppm and 4 ppm) were used on demineralized-specimens for 7 days. Polarizing microscope and scanning electron microscope were used for the evaluation of the mineral distribution profile and morphology of crystallites of hydroxyapatite. The results were as follows: 1. When treated with the fluoride solutions, the demineralized dentine specimens showed remineralization of the upper part and demineralization of the lower part of the lesion body simultaneously. 2. As the concentration of fluoride increased, the mineral precipitation in the caries dentine increased. The mineral precipitation mainly occurred in the surface layer in 1 and 2 ppm- specimens and in the whole lesion body in 4 ppm -specimens. 3. When treated with the fluoride solution, the hydroxyapatite crystals grew. This crystal growth was even observed in the lower part of the lesion body which had shown the loss of mineral.

키워드

참고문헌

  1. Featherstone JD, Duncan JF, Cutress TW. A mechanism for dental caries based on chemical processes and diffusion phenomena during in-vitro caries simulation on human tooth enamel. Arch Oral Biol 24:101-112,1979 https://doi.org/10.1016/0003-9969(79)90057-8
  2. Margolis HC, Moreno EC. Physicochemical perspectives on the cariostatic mechanisms of systemic and topical fluorides. J Dent Res 69 Spec No: 606-613; discussion 34-36,1990
  3. Dean HT, Arnold FA, Elvove E. Domestic water and dental caries. V. Additional studies of the relation of fluoride in domestic waters to dental caries experience in 4,425 white children aged 12 to 14 years, of 13 cities in 4 states. Publ.Hlth.Rep 57:1155-1179,1942 https://doi.org/10.2307/4584182
  4. ten Cate JM, Rempt HE. Comparison of the in vivo effect of a 0 and 1,500 ppmF MFP toothpaste on fluoride uptake, acid resistance and lesion remineralization. Caries Res 20:193-201,1986 https://doi.org/10.1159/000260935
  5. Arends J, Christoffersen J, Ruben J, Jongebloed WL. Remineralization of bovine dentine in vitro. The influence of the F content in solution on mineral distribution. Caries Res 23:309-314,1989 https://doi.org/10.1159/000261198
  6. Silverstone LM, Poole DF. The effect of saliva and calcifying solutions upon the histological appearance of enamel caries. Caries Res 2:87-93,1968 https://doi.org/10.1159/000259547
  7. Varughese K, Moreno EC. Crystal growth of calcium apatites in dilute solutions containing fluoride. Calcif Tissue Int 33:431-439,1981 https://doi.org/10.1007/BF02409467
  8. 한원섭, 이찬영. 인공치아우식의 재광화에 미치는 불소의 영향. 대한치과보존학회지 21:161-173,1996
  9. Kawasaki K, Ruben J, Tsuda H, Huysmans MC, Takagi O. Relationship between mineral distributions in dentine lesions and subsequent remineralization in vitro. Caries Res 34:395-403,2000 https://doi.org/10.1159/000016614
  10. Levine RS, Rowles SL. Further studies on the remineralization of human carious dentine in vitro. Arch Oral Biol 18:1351-1356,1973 https://doi.org/10.1016/0003-9969(73)90108-8
  11. Groeneveld A, Jongebloed W, Arends J. The mineral content of decalcified surface enamel. A combined microprobe- quantitative microradiography study. Caries Res 8:267-274,1974 https://doi.org/10.1159/000260115
  12. Aoba T, Okazaki M, Takahashi J, Moriwaki Y. X-ray diffraction study on remineralization using synthetic hydroxyapatite pellets. Caries Res 12:223-230,1978 https://doi.org/10.1159/000260336
  13. Darling AI. Some observations on amelogenesis imperfecta and calcification of the dental enamel. Proc R Soc Med 49:759-765,1956
  14. Featherstone JD, ten Cate JM, Shariati M, Arends J. Comparison of artificial caries-like lesions by quantitative microradiography and microhardness profiles. Caries Res 17:385-391,1983 https://doi.org/10.1159/000260692
  15. Haikel Y, Frank RM, Voegel JC. Scanning electron microscopy of the human enamel surface layer of incipient carious lesions. Caries Res 17:1-13,1983 https://doi.org/10.1159/000260643
  16. Vizioli MR. Dichroism and birefringence in human carious dentine. Ann Histochim 15:131-140,1970
  17. Dietz W, Kraft U, Hoyer I, Klingberg G. Influence of cementum on the demineralization and remineralization processes of root surface caries in vitro. Acta Odontol Scand 60:241-247,2002 https://doi.org/10.1080/000163502760148025
  18. Arends J, Ruben J, Jongebloed WL. Dentine caries in vivo. Combined scanning electron microscopic and microradiographic investigation. Caries Res 23:36-41,1989 https://doi.org/10.1159/000261152
  19. Takuma S. Demineralization and Remineralization of tooth substance- an ultrastructural basis for caries prevention. J Dent Res :2146-2156,1980
  20. LeGeros RZ. Formation and Stability of Synthetic Apatites. Calcium Phosphates in Oral Biology and Medicine: Karger, p 82-107,1991
  21. Holmen L, Thylstrup A, Featherstone JD, Fredebo L, Shariati M. A scanning electron microscopic study of surface changes during development of artificial caries. Caries Res 19:11-21,1985 https://doi.org/10.1159/000260825
  22. Hayashi Y. High resolution electron microscopy of the interface between dental calculus and denture resin. Scanning Microsc 9:419-425; discussion 25-27,1995
  23. 박정원, 이찬영. 유기산 완충용액의 포화도가 법랑질 및 상아질의 재광화에 미치는 영향과 수산화인회석의 AFM 관찰. 대한치과보존학회지. 25:459-473,2000
  24. Takuma S, Sunohara H, Watanabe H, Yama K. Some structural aspects of carious lesions in human dentine. Bull. Tokyo dent. Coll. 10:173-181,1969
  25. LeGeros RZ. Chemical and crystallographic events in the caries process. J Dent Res 69 Spec No:567-574;discussion 634-636, 1990 https://doi.org/10.1177/00220345900690S113
  26. Watson ML, Avery JK. The development of the hamster lower incisor as observed by electron microscopy. Am J Anat 95:109-,1954 https://doi.org/10.1002/aja.1000950105
  27. Levine RS. Remineralization of human carious dentine in vitro. Arch Oral Biol 17:1005-1008,1972 https://doi.org/10.1016/0003-9969(72)90124-0
  28. Klont B, ten Cate JM. Remineralization of bovine incisor root lesions in vitro: the role of the collagenous matrix. Caries Res 25:39-45,1991 https://doi.org/10.1159/000261340
  29. Scott DB, Simmelink JW, Nygaard V. Structural aspects of dental caries. J Dent Res 53:165-178,1974 https://doi.org/10.1177/00220345740530020401