DOI QR코드

DOI QR Code

Real-Time Voltammetric Assay of Lead Ion in Biological Cell Systems

  • Ly, Suw-Young (Biosensor Research Institute, Seoul National University of Technology)
  • Published : 2009.12.01

Abstract

Trace lead detection for cyclic voltammetry (CV) and square-wave (SW) stripping voltammetry was performed using mercury immobilized onto a carbon nanotube electrode (HNPE). Using the characteristics of mercury and the catalytic carbon nanotube structure, a modified technique, the $0.45{\mu}g/l$ detection limit of lead ion was attained. The developed method can be applied to pond water, fish tissue, plant tissue, and in vivo direct assay.

Keywords

References

  1. Alastair, N.B., Richard, PA. and Richard, GC. (2000). Sonoelectroanalysis: Application to the detection of lead in petrol. Electroanal, 12, 16-20 https://doi.org/10.1002/(SICI)1521-4109(20000101)12:1<16::AID-ELAN16>3.0.CO;2-Z
  2. Andrew, J.S., CeAsar, A.G, Mark, PT., Frank, M. and Richard, GC. (1999). Sono-cathodic stripping voltammetry of lead at a polished boron-doped diamond electrode: Application to the determination of lead in river sediment. Electroanal, 11, 1083-1088 https://doi.org/10.1002/(SICI)1521-4109(199911)11:15<1083::AID-ELAN1083>3.0.CO;2-I
  3. Bhim, B.P. and Bhavana, A. (2003). Imprinted polymer modified hanging mercury drop electrode for differential pulse adsorptive stripping voltammetric analysis of a diquat herbicide. Electroanal, 2, 108-114
  4. DomeAnech, C.A., DomeAnech, C.M.T., Gimeno, A.J.V., Moya, M. and Bosch, R.F. (2000). Voltammetric identification of lead(ll) and (IV) in mediaeval glazes in abrasionmodified carbon paste and polymer film electrodes. Application to the study of alterations in archaeological ceramic. Electroanal, 12, 120-127 https://doi.org/10.1002/(SICI)1521-4109(200002)12:2<120::AID-ELAN120>3.0.CO;2-E
  5. Ellen, K.S. (2003). Facilitative mechanisms of lead as a carcinogen. Mutat. Res., 533, 121-133 https://doi.org/10.1016/j.mrfmmm.2003.07.010
  6. Eric, H.D.C. and Khalil, J.S. (1997). Retrospective analysis of anthropogenic inputs of lead and other heavy metals to the hawaiian sedimentary environmentw. Appl. Organomet. Chem., 11, 415-437 https://doi.org/10.1002/(SICI)1099-0739(199705)11:5<415::AID-AOC599>3.0.CO;2-P
  7. Huge, Y.Y., Keyrati, S., Rhonda, E., Kanta, B. and Palph, E.K. (1995). Capillary blood collection by paper for lead analysis by graphite furnace atomic absorption spectrometry. Microchem. J., 52, 370-375 https://doi.org/10.1006/mchj.1995.1110
  8. Jin, T.W., Yin, H., Jian, Z.l., Jin, L. and Zhong, H.L. (1997). Electrochemical behaviors of DNA at mercury film electrode. Bioeletrochem. Bioenerg., 44, 51-154 https://doi.org/10.1016/S0302-4598(97)00044-5
  9. Joseph, W., Jianmin, L., Samo, B.H. and Bozidar, O. (2001). Bismuth-coated screen printed electrodes for stripping voltammetric measurements of trace lead. Electroanal., 13, 13-16
  10. Joseph, W., Samo, B.H. and Bozidar, O. (2004). Carbon nanotube-modified glassy carbon electrode foradsorptive stripping voltammetric detection of ultratrace levels of 2,4,6-trinitrotoluene. Electrochem. Commun., 6, 176-179 https://doi.org/10.1016/j.elecom.2003.11.010
  11. Lauralynn, T., Robert, L., Lorna, K., James, A.D., Kevin, A. and Wayne, TS. (2001). Evaluation of a portable blood lead analyzer with occupationally exposed populations. Am. J. Ind. Med., 40, 354-362 https://doi.org/10.1002/ajim.1109
  12. Mana S.D., Miriam, E.P. and Beatriz, S.F.B. (2004). A sensitive spectrophotometric method for lead determination by flow injection analysis with on-line preconcentration. Talanta., 63, 405-409 https://doi.org/10.1016/j.talanta.2003.11.012
  13. Percio, A.M. Farias., Angela, L.R.W, Margarida, B.R.B., Adriana, T.S. and Arnaldo, Mana, L.P. and Gustavo, A.R. (2004). Adsorption and electrooxidation of nucleic acids at carbon nanotubes paste electrodes. Electrochem. Commun., 6, 10-16 https://doi.org/10.1016/j.elecom.2003.10.008
  14. Richard, P.A., Jon, C.B., Frank, M. and Richard, G.C. (1998). The use of sonotrodes for electroanalysis: Sono-ASV detection of lead in aqueous solution. Electroanal., 10, 26-32 https://doi.org/10.1002/(SICI)1521-4109(199801)10:1<26::AID-ELAN26>3.0.CO;2-G
  15. Sandra, C.C.M., Helena, M.C., Joao, E.J.S. and Armando, C.D. (2004). Optimisation of mercury film deposition on glassy carbon electrodes: Evaluation of the combined effects of pH, thiocyanate ion and deposition potential. Anal. Chim. Acta, 503, 203-212 https://doi.org/10.1016/j.aca.2003.10.034
  16. Tesfaye, H.D., Bhagwan, S.C. and Hailemichael, A (1999). Differential pulse anodic stripping voltammetric determination of lead(ll) with N-p-chloro phenylcinnamo hydroxamic acid modifed carbon paste electrode. Electroanal., 17, 1305-1311
  17. Vagn, E., Nils, G.L., Lars, G., Lars, R. and Gunnar, N. (2001). Lung cancer risks among lead smelter workers alsoexposed to arsenic. Sci. Total Environ., 273, 77-82 https://doi.org/10.1016/S0048-9697(00)00843-3
  18. Yu, C.T., Barry, A.C., Katherine H., John S.F., Frank, M. and Richard, G. (2001). Compton, microwave-enhanced anodic stripping detection of leadin a river sediment sample. A mercury-free procedure employing a boron-doped diamond electrode. Electroanal., 13, 831-835 https://doi.org/10.1002/1521-4109(200106)13:10<831::AID-ELAN831>3.0.CO;2-Z