정전용량 흡수 능력을 고려한 마이크로파 분포증폭기 설계

Design of a Microwave Distributed Amplifier Considering Capacitance Absorption Capability

  • 김남태 (인제대학교 전자정보통신공학부)
  • Kim, Nam-Tae (School of Electronics and Telecommunication Eng., Inje University)
  • 발행 : 2009.11.25

초록

본 논문에서는 분포정수 회로합성을 이용하여 최적의 정전용량 흡수 능력을 갖는 분포증폭기를 설계한다. 증폭기를 구성하는 여파기의 전달함수는 저역통과 Chebyshev 근사로 합성하며, 이의 정전용량 흡수 능력은 최소 삽입손실(MIL)과 리플의 함수로 계산한다. 분포증폭기의 능동 소자는 S-퍼래미터를 이용하여 등가회로로 모델링하며, 이의 정전용량은 전달함수의 MIL과 리플을 적절히 조정함으로써 여파기 구조로 흡수한다. 이의 응용 예로써, 0.1~7.5GHz의 주파수 대역에서 약 12.5dB의 이득을 갖는 분포증폭기를 설계하며, 실험을 통하여 정전용량 흡수 능력을 고려한 분포정수 회로합성이 분포증폭기의 설계에 유용하게 이용될 수 있음을 입증한다.

In this paper, a distributed amplifier is designed using distributed network synthesis that provides the optimum absorption capability of a capacitance. Transfer functions of filters, which consist of the amplifier, are synthesized by a low-pass Chebyshev approximation. Capacitances that a filter network can absorb are calculated as a function of its minimum insertion loss(MIL) and ripple. Active devices in a distributed amplifier are modeled as equivalent circuits by using their S-parameters, and their equivalent capacitances are absorbed into filter structures by properly adjusting the MIL and ripple of a transfer function. As an application example, a distributed amplifier with the gain of about 12.5dB is designed that operates over the frequency range between 0.1 and 7.5GHz. Experimental results prove that distributed network synthesis, which considers capacitance absorption capability, is useful to the design of distributed amplifiers.

키워드

참고문헌

  1. W. S. Percival, 'Thermionic Valve Circuits,' British Patent 460562, Jan. 1937
  2. S. Kimura and Y. Imai, '0-40GHz GaAs MESFET Distributed Baseband Amplifier IC's for High-Speed Optical Transmission,' IEEE Trans. on Microwave Theory and Tech., vol. MTT-44, pp. 2076-2082, Nov. 1996 https://doi.org/10.1109/22.543965
  3. B. J. Minnis, 'A 2-18GHz Multistage Distributed Amplifier with 40dB Gain,' in IEEE Colloquium Multi-Octave Active and Passive Components and Antennas, Digest no. 1987/35, pp. 3/1-3/4, Mar. 1987
  4. G. D. Vendelin, A. M. Pavio, and U. L. Rohde, Microwave Circuit Design Using Linear and Nonlinear Techniques, John Wiley &Sons, pp. 288-301, 1990
  5. B. Y. Banyanmin and M. Berwick, 'Analysis of the Performance of Four-Cascaded Single-Stage Distributed Amplifiers,' IEEE Trans. on Microwave Theory and Tech., vol. MTT-48, pp. 2657-2663, Dec. 2000 https://doi.org/10.1109/22.899027
  6. Aguirre, et al., '50-GHz SiGe HBT Distributed Amplifiers Employing Constant-k and m-Derived Filter Sections' IEEE Trans. on Microwave Theory and Tech., vol. MTT-52, pp. 1573-1579, May 2004 https://doi.org/10.1109/TMTT.2004.827049
  7. J. B. Beyer, S. N. Prasad, R. C. Becker, J. E. Nordman, and G. K. Hohenwarter, 'MESFET Distributed Amplifier Design Guidelines,' IEEE Trans. on Microwave Theory and Tech., vol. MTT-32, pp. 268-275, Mar. 1984 https://doi.org/10.1109/TMTT.1984.1132664
  8. A. Sweet, MIC & MMIC Amplifier and Oscillator Circuit Design, Artech House, pp. 120-128, 1990
  9. J. Helszajn, Synthesis of Lumped Element, Distributed and Planar Filters, McGraw-Hill Book Co, pp. 284-292, 1990
  10. Y. Ayasli, R.. Mozzi, J. L. Vorhaus, L. D. Reynolds, and R. A. Pucel, 'A Monolithic GaAs 1-13GHz Traveling-Wave Amplifier,' IEEE Trans. onMicrowave Theory and Tech., vol. MTT-30, pp. 976-981, July 1982 https://doi.org/10.1109/TMTT.1982.1131186
  11. R. Levy, 'Synthesis of Mixed Lumped and Distributed Impedance-Transforming Filters,' IEEE Trans. on Microwave Theory and Tech., vol. MTT-20, pp. 223-233, March 1972 https://doi.org/10.1109/TMTT.1972.1127721
  12. R. Soares, GaAs MESFET Circuit Design, Artech House, pp. 147-153, 1988