Digital Radiography Images Restoration with Wiener Filter in Wavelet Domain

웨이블릿영역에서 위너필터를 이용한 디지털 방사선 영상 복원

  • Published : 2009.11.25

Abstract

Digital radiography (DR) images are corrupted by the additive noise, and also distorted by system impulse response. These unwanted phenomena are obstacles to obtain the desired image. To recover the original image, we applied multiscale Wiener filters in wavelet domain for DR images. The multiscale Wiener filter is first proposed by Chen for the restoration of fractal signals which are distorted by the system impulse response and additive noise. In this paper, we extended the multiscale Wiener filter to the two dimensional data. To compare the performance of ours with others, some simulations are given for a couple of wavelet filters with different wavelet levels, system impulse reponses and various noise power. When the addive noise powers are between 20-32 dB, the signal to noise ratio(SNR) of the proposed system is 0.5-2.0 dB better than that of the traditional Wiener filter method.

디지털 방사선 영상은 첨가되는 잡음에 의해 영상이 흐려지고, 시스템 특성에 의해 왜곡된 영상을 얻게 된다. 이런 현상들은 보고자하는 영상의 본질을 보기 어렵게 한다. 왜곡된 영상을 복구하기 위해 웨이블릿 영역에서 다해상도 위너필터를 적용하였다. 다해상도 위너필터는 시스템 임펄스 응답과 잡음에 의해 변형된 프랙탈 신호의 복원을 위하여 Chen이 최초로 제안하였다. 본 논문에서는 Chen이 제안한 다해상도 위너필터를 2차원 영상 데이터에 대하여 적용하였다. 다해상도 위너필터와 다른 방법의 성능을 비교하기 위하여, 두 종류의 웨이블릿 필터들에 대하여 시스템 임펄스 응답과 잡음 전력의 특성에 따라 실험을 하였다. 첨가된 잡음 전력이 20-32 dB 일 때, 본 논문에서 제안한 방법의 신호 대 잡음비는 기존의 위너필터에 비해 0.5-2.0 dB 더 좋은 성능을 보였다.

Keywords

References

  1. R. C. Gonzalez and R. E. Woods, 'Digital Image Processing, second edition', Prentice-Hall, 2002
  2. P. Vuylsteke and E. Schoeters, 'Multiscale Image Contrast Amplification (MUSICA)', in Proceedings of SPIE, ed. M. H. Loew, vol. 2167, p.551-560, SPIE, Bellingham, 1994 https://doi.org/10.1117/12.175090
  3. R. R. Coifman and D. L. Donoho, 'Translation- Invariant De-Noising' in Waveletsandstatistics, ed.A.AntoniadisandG.Oppenhein,Springer-Verlag,Berlin,1995
  4. M. R. BANHAM and A. K. KATSAGGELOS, 'Digital Image Restoration', IEEE Transactions on Signal Processing, p.24-41, 1997
  5. F. B. Behrouz, 'Adaptive Filters Theory and Applications', John Wiley & Sons, 1999
  6. H. C. Andrews and B. R. Hunt, 'Digital Image Restoration', Prentice-Hall, 1977
  7. N.P. Galatsanos and A.K. Katsaggelos, 'Methods for Choosing the Regularization Parameter and Estimating the Noise Variance in Image Restoration and their Relation,' IEEE Transactions on Image Processing, vol.1, p.322-336, 1992 https://doi.org/10.1109/83.148606
  8. E. Meinel, 'Origins of Linear and Nonlinear Recursive Restoration Algorithms,' Journal Optical Soc. Amer., vol. 3, p.787-799, 1986 https://doi.org/10.1364/JOSAA.3.000787
  9. B. S. Chen and C. W. Lin, 'Multiscale Wiener Filter for the Restoration of Fractal Signals : Wavelet Filter Bank Approach', IEEE Transactions on signal processing, vol. 42, no. 11, p.2972-2982, 1994 https://doi.org/10.1109/78.330358
  10. S. Dippel, M. stahl, R. Wiemker, and T. Blaffert, 'Multiscale Contrast Enhancement for Radiographies: Laplacian Pyramid versus Fast Wavelet Transform', IEEE Transactions on medical imaging, vol. 21, no. 4, p.343-353, 2002 https://doi.org/10.1109/TMI.2002.1000258
  11. K. K Shung, M. B. Smith, and B. M. W. Tsui, 'Principles of Medical Imaging' Academic Press, San Diego, 1992
  12. M. J. Shensa, 'The Discrete Wavelet Transform: Wedding the A Trous and Mallat Algorithms', IEEE Transactions on signal processing, vol. 40, no. 10, p.2464-2482, 1992 https://doi.org/10.1109/78.157290
  13. A. H. Sayed and T. Kailath, 'A Survey of Spectral Factorization Methods', Numerical Linear Algebra with Applications, p.467-496, 2001 https://doi.org/10.1002/nla.250
  14. R. L. Lagendijk and J. Biemond, 'Iterative Identification and Restoration of Images,' Boston: Kluwer, 1990