Evaluation of Compaction Properties of Subgrade Soil by Gyratory Compaction Curve

선회다짐곡선특성을 이용한 노상토의 다짐도 평가

  • 이관호 (공주대학교 건설환경공학부) ;
  • 차민경 (경성대학교 건설환경공학부) ;
  • 임유진 (배재대학교 건설환경공학부)
  • Published : 2009.02.28

Abstract

Compacted soil are used in almost roadway construction with compaction of soil. The direct consequence of soil compaction is densification, which in turn results in higher strength, lower compressibility, and lower permeability. The standard and modified Proctor tests are the most common methods. Both of these tests utilize impact compaction, although impact compaction shows no resemblance to any type of field compaction and is ineffective for granular soils. It has been dramatic advances in field compaction equipment. Therefore, the Proctor tests no longer represent the maximum achievable field density. The main objectives of this research are a survey of current field compaction equipment, laboratory investigation of compaction characteristics, and field study of compaction characteristics. The findings from the laboratory and compaction program were used to establish preliminary guidelines for suitable laboratory compaction procedures.

입상재료를 이용한 도로의 시공은 주로 다짐을 이용한다. 다짐으로 인한 효과는 흙의 강도증진, 압축변형감소, 투수계수감소등이 있다. 현재 사용하는 다짐은 주로 프록터 다짐기를 이용한 표준 및 수정다짐방법을 이용한다. 프록터 다짐기는 주로 충격에너지를 이용하여 다짐효과를 구현하는데, 이는 현장의 다짐기기에 의한 다짐조건과 상이하며, 최대건조밀도를 맞추는데 상당한 어려움이 있다. 이러한 문제를 해결하기 위하여 선회다짐기를 이용한 흙의 다짐평가를 시행하였다. 본 연구의 목적은 현장다짐장비의 조사, 실내다짐방법의 다짐특성 평가, 현장다짐특성을 평가하여, 선회다짐기를 이용한 새로운 다짐평가방법을 제시하고자 한다.

Keywords

References

  1. 건설교통부(2000), 도로설계편람(II), pp. 405.1 - 405.9
  2. 김용필 등 (2002), 지반공학시험 이론과 실무, 세진사, pp. 800
  3. 남상욱 (2002), 토목시공학, 청운문화사, pp. 158-168
  4. 박승목, 이관호(2003), 다짐방법에 따른 노상토의 설계입력변수 특성 연구, 대한토목학회, 23권 4D, pp. 439-448
  5. 박태성, 이관호, 이병식, 현성철 (2007), 선회다짐기 다짐곡선을 이용한 아스팔트 혼합물의 소성변형 특성 평가, 한국방재학회, 7권 3호, pp. 59-68
  6. AASHTO (1996), Standard Specifications for Transportation Materials and Methods of Sampling and Testing, June 1996 Edition, pp. 150
  7. Bahia, H.U., Timothy P. Friemel1, Pehr A. Peterson1, Jeffrey S. Russell1, and Brian Poehnelt (1998), Optimization of Constructibility and Resistance to Traffic: A New Design Approach for HMA Using the Superpave Compactor, AAPT, Vol. 67, pp. 189-213
  8. Blankenship, P.B., K. C. Mahboub, G. A. Huber, Rational Method for Laboratory Compaction of Hot-Mix Asphalt, Transportation Research Record 1454, TRB, National Research Council, Washington, D.C., 1994, pp. 144-153
  9. Browne, M. J. (2006), Feasibility of using gyratory compactor to determine compaction characteristics of soil, Montana State University, Master Thesis, pp. 126
  10. Butcher, M. (1997), Determining Gyratory Compaction Characteristics using the Servopac Gyratory Compactor, TRB, Vol. 1630, pp. 89-97 https://doi.org/10.3141/1630-11
  11. FHWA (1995), Superpave Level 1 Mix Design, Asphalt Institute, FHWA Publication Series No. 2, Publication Number (SP-2), February, pp. 170
  12. Harris, P., Holdt, J.V., Sebesta, S., and Scullion, T. (2006), Recommendations for stabilization of high sulfate soil in Texas, FHWA/TX_06/0_4240_3, pp. 62
  13. Hinrichsen, J. (2000), A Comparison of Four Brands Superpave Gyratory Compactor, TRB, Vol. 1767, pp. 167-172 https://doi.org/10.3141/1767-21
  14. Lee, K. (1996), The use of waste materials in hot mix asphalt, Ph.D Thesis, Dept. of Civil Engineering, Purdue Univ., W. Lafaytte, IN, USA
  15. Mallick, R. B. (2000), Use of Superpave Gyratory Compactor to Characterize Hot Mix Asphalt (HMA), TRB, Vol. 1681, pp. 86-96 https://doi.org/10.3141/1681-11
  16. Ortolani, L. and Sandberh, H. A. (1952), The Gyratory Shear Method of Modeling Asphaltic Concrete Test Specimens ; Its Development and Correlation with Field Compaction Methods, Proceeding, AAPT, Vol. 21, pp. 280-297