초록
프레임 단위로 식별 데이터베이스에 저장된 참조 신호의 특징 벡터와 유사성을 비교하여 입력 신호를 식별하는 경우에, 참조 신호의 특징 벡터로 데이터베이스를 어떻게 구성하는가에 따라 식별 성능은 영향을 받을 수 있다. 즉, 식별 데이터베이스의 구성 방법에 따라 데이터베이스의 크기와 식별을 위한 계산량, 식별 성능 등이 결정되며, 이것은 실제로 수중 천이신호 식별 시스템을 구성할 때 중요한 문제이다. 본 논문에서는 LBG 벡터 양자화 기법을 이용하여 식별 데이터베이스의 크기를 줄여 줌으로써 프레임 기반 수중 천이신호 식별 기법의 효율성을 증가시킬 수 있는 방법을 제안하고, 실험을 통하여 제안한 방법의 타당성을 검증하였다.
When we classify underwater transient signals with frame-by-frame decision, a database design method for reference feature vectors influences on the system performance such as size of database, computational burden and recognition rate. In this paper the LBG vector quantization algorithm is applied to reduction of the number of feature vectors for each reference signal for efficient classification of underwater transient signals. Experimental results have shown that drastic reduction of the database size can be achieved while maintaining the classification performance by using the LBG vector quantization.