DOI QR코드

DOI QR Code

Mechanical Properties and Fabrication of Nanostructured ReSi1.75 by High Frequency Induction Heated Combustion Synthesis

고주파유도가열 연소합성에 의한 나노구조 ReSi1.75 제조 및 기계적 성질

  • Kim, Byung-Ryang (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University) ;
  • Kim, Su-Chul (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University) ;
  • Shon, In-Jin (Division of Advanced Materials Engineering, the Research Center of Industrial Technology, Chonbuk National University)
  • 김병량 (전북대학교 신소재공학부 공업기술연구센터) ;
  • 김수철 (전북대학교 신소재공학부 공업기술연구센터) ;
  • 손인진 (전북대학교 신소재공학부 공업기술연구센터)
  • Published : 2009.02.28

Abstract

Nanostructured $ReSi_{1.75}$ was synthesized to have high density via rapid and cost effective process named as high-frequency induction heated combustion synthesis(HFIHCS) method. For the process, mechanically activated Re-Si powder was used, which had been prepared by mechanical ball milling of Re and Si powders with mixing ratio of 1:1.75. Both combustion synthesis and densification were accomplished simultaneously by applying electric current and mechanical pressure of 80 MPa during the process. The average grain size, hardness, and fracture toughness of the compound were 210 nm, 1085 $kg/mm^2$ and 4 $MPa{\cdot}m^{1/2}$, respectively. The experimental results show that HFIHCS is a promising process for synthesis of nanostructured $ReSi_{1.75}$ which has a potential for both high temperature and thermo-electric applications.

Keywords

References

  1. J. Milne: Instant Heat, Kinetic Metals Inc., Derby, CT (1985).
  2. Y. S. Touloukian, R. W. Powell, C. Y. Ho and P. G. Klemens: Thermal Conductivity, IFI/Plenum, New York, (1970) 1324.
  3. A. Heinrich, H. Griebmann, G. Behr, L. Ivanenko, J. Schumann and H. Vinzelberg: Thin solid films, 381 (2001) 287. https://doi.org/10.1016/S0040-6090(00)01758-2
  4. K. Kurokawa, H. Hara, H. Takahashi and H. Takahashi: Vacuum, 65 (2002) 497. https://doi.org/10.1016/S0042-207X(01)00462-6
  5. V. S. Nesphor and G. V. Samsonov: Phys. Met. Metallogr, 11 (1960) 146.
  6. U. Gottlieb, B. Lambert-Andron, F. Nava, M. Affronte and O. Rouault: J appl Phys., 78 (1995) 3902. https://doi.org/10.1063/1.360707
  7. K. Kuwabara, H. Inui and M. Yamaguchi: Intermetallic. 10 (2002) 129. https://doi.org/10.1016/S0966-9795(01)00119-4
  8. H. Gleiter: Nanostruct. Mater., 6 (1995) 3. https://doi.org/10.1016/0965-9773(95)00025-9
  9. J. Karch, R. Birringer and H. Gleiter: Nature, 330 (1987) 556. https://doi.org/10.1038/330556a0
  10. A. M. George, J. Iniguez and L. Bellaiche: Nature, 413 (2001) 54. https://doi.org/10.1038/35092530
  11. D. Hreniak and W. Strek: J. Alloys Compd., 341 (2002) 183. https://doi.org/10.1016/S0925-8388(02)00067-1
  12. C. Xu, J. Tamaki, N. Miura and N. Yamazoe: Sens. Actuators B, 3 (1991) 147. https://doi.org/10.1016/0925-4005(91)80207-Z
  13. D. G. Lamas, A. Caneiro, D. Niebieskikwiat, R. D. Sanchez. D. Garcia and B. Alascio: J. Magn. Mater., 241 (2002) 207. https://doi.org/10.1016/S0304-8853(02)00006-9
  14. E. S. Ahn, N. J. Gleason, A. Nakahira and J. Y. Ying: Nano Lett., 1 (2001) 149. https://doi.org/10.1021/nl0055299
  15. Z. Fang and J. W. Eason: Int. J. of Refractory Met. & Hard Mater., 13 (1995) 297. https://doi.org/10.1016/0263-4368(95)92675-A
  16. A. I. Y. Tok, I. H. Luo and F. Y. C. Boey: Mat. Sci. Eng. A, 383 (2004) 234. https://doi.org/10.1016/j.msea.2004.05.071
  17. I. J. Shon, D. K. Kim, I. Y. Ko, J. K. Yoon and K. T. Hong: Mater. Sci. For., 534 (2007) 525. https://doi.org/10.4028/www.scientific.net/MSF.534-536.525
  18. M. Sommer, W. D. Schubert, E. Zobetz and P. Warbichler: Int. J. of Refractory Met. & Hard Mat., 20 (2002) 41. https://doi.org/10.1016/S0263-4368(01)00069-5
  19. I.-J. Shon, H.-K. Park, H.-C. Kim, J.-K. Yoon, K.-T. Hong and I.-Y. Ko: Scripta Matere., 56 (2007) 665. https://doi.org/10.1016/j.scriptamat.2006.12.042
  20. C. Suryanarayana, M. Grant Norton: X-ray Diffraction A Practical Approach, Plenum Press, New York, (1998) 213.
  21. D. Y. Oh, H. C. Kim, J. K. Yoon and I. J. Shon: J. Alloys and Compd., 395 (2005) 174. https://doi.org/10.1016/j.jallcom.2004.10.072
  22. K. Niihara, R. Morena and D. P. H. Hasselman: J. Mater. Sci. Lett., 1 (1982) 12. https://doi.org/10.1007/BF00724706