DOI QR코드

DOI QR Code

The Formation and Crystallization of Amorphous Ti50Cu50Ni20Al10 Powder Prepared by High-Energy Ball Milling

  • Viet, Nguyen Hoang (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Jin-Chun (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan) ;
  • Kim, Ji-Soon (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan) ;
  • Kwon, Young-Soon (Research Center for Machine Parts and Materials Processing, School of Materials Science and Engineering, University of Ulsan)
  • Published : 2009.02.28

Abstract

Amorphization and crystallization behaviors of $Ti_{50}Cu_{50}Ni_{20}Al_{10}$ powders during high-energy ball milling and subsequent heat treatment were studied. Full amorphization obtained after milling for 30 h was confirmed by X-ray diffraction and transmission electron microscope. The morphology of powders prepared using different milling times was observed by field-emission scanning electron microscope. The powders developed a fine, layered, homogeneous structure with prolonged milling. The crystallization behavior showed that the glass transition, $T_g$, onset crystallization, $T_x$, and super cooled liquid range ${\Delta}T=T_x-T_g$ were 691,771 and 80 K, respectively. The isothermal transformation kinetics was analyzed by the John-Mehn-Avrami equation. The Avrami exponent was close to 2.5, which corresponds to the transformation process with a diffusion-controlled type at nearly constant nucleation rate. The activation energy of crystallization for the alloy in the isothermal annealing process calculated using an Arrhenius plot was 345 kJ/mol.

Keywords

References

  1. A. Inoue: Acta. Mater., 48 (2000) 279. https://doi.org/10.1016/S1359-6454(99)00300-6
  2. T. Zhang, A. Inoue and T. Masumoto: Mater. Sci. Eng. A, 181/182 (1994) 1423. https://doi.org/10.1016/0921-5093(94)90877-X
  3. A. Inoue, N. Nishiyama and T. Masumoto: Mater. Lett., 19 (1994) 131. https://doi.org/10.1016/0167-577X(94)90057-4
  4. K. Amiya, N. Nishiyama, A. Inoue and T. Masumoto: Mater. Sci. Eng. A, 179/180 (1994) 692. https://doi.org/10.1016/0921-5093(94)90294-1
  5. T. Zhang and A. Inoue: Mater. Trans. JIM, 39 (1998) 1001. https://doi.org/10.2320/matertrans1989.39.1001
  6. Y. C. Kim, S. Yi, W. T. Kim and D. H. Kim: Mater. Sci. Forum, 360-362 (2001) 67. https://doi.org/10.4028/www.scientific.net/MSF.360-362.67
  7. I. K. Jeng, Y. Lee, J. S. Chen, R. R. Jeng, C. H. Yeh and C. K. Lin: Intermetal, 10 (2002) 1271. https://doi.org/10.1016/S0966-9795(02)00161-9
  8. A. Inoue, T. Zhang, N. Nishiyama, K. Ohba and T. Masumoto: Mater. Trans. JIM, 34 (1993) 1234. https://doi.org/10.2320/matertrans1989.34.1234
  9. A. W. Weeber and H. Bakker: Physica B, 153 (1988) 93. https://doi.org/10.1016/0921-4526(88)90038-5
  10. L. Schultz: J. Less Common Metals, 145 (1988) 233. https://doi.org/10.1016/0022-5088(88)90281-0
  11. P. P. Choi, J. S. Kim, O. T. H. Nguyen, Y. S. Won: Mater. Sci. Eng. A, 449-451 (2007) 1119. https://doi.org/10.1016/j.msea.2006.02.264
  12. N. T. H. Oanh, P. P. Choi, J. S. Kim, D. H. Kwond and Y. S. Kwon: Mater. Sci. Forum, 534-536 (2007) 233. https://doi.org/10.4028/www.scientific.net/MSF.534-536.233
  13. F. Spaepen: Science , 235 (1987) 1010. https://doi.org/10.1126/science.235.4792.1010
  14. R. W. Cahn: “Physical Metallurgy”, North Holland Publ. Co., Amsterdam-New York-Oxford, (1977) 525.
  15. M. Avrami: J. Chem. Phys., 7 (1939) 1103. https://doi.org/10.1063/1.1750380
  16. M. J. Vestel, D. S. Grummon, R. Gronsky and A. P. Pisano: Acta Mater., 51 (2003) 5309. https://doi.org/10.1016/S1359-6454(03)00389-6