DOI QR코드

DOI QR Code

Three dimensional analysis of tooth movement using different sizes of NiTi wire on NiTi scissors-bite corrector

NiTi scissors-bite corrector의 와이어 굵기에 따른 3차원적 치아 이동 양상

  • Jeon, Hyun-Ju (Division of Orthodontics, Department of Dentistry, Ewha Womans University Mokdong Hospital) ;
  • Park, Sun-Hyung (Division of Orthodontics, Department of Dentistry, School of Medicine, Ewha Womans University) ;
  • Jung, Sang-Hyuk (Department of Preventive Medicine, School of Medicine, Ewha Womans University) ;
  • Chun, Youn-Sic (Division of Orthodontics, Department of Dentistry, School of Medicine, Ewha Womans University)
  • 전현주 (이화여자대학교 의료원 부속 목동병원 치과교정과) ;
  • 박선형 (이화여자대학교 의과대학 치과학교실 교정과) ;
  • 정상혁 (이화여자대학교 의과대학 예방의학교실) ;
  • 전윤식 (이화여자대학교 의과대학 치과학교실 교정과)
  • Published : 2009.02.28

Abstract

Objective: The purpose of this study was to compare the difference in three dimensional tooth movement using three different wire sizes($0.018{\times}0.025-in,\;0.016{\times}0.022-in$ 0.016-in) on a NiTi scissors-bite corrector. Methods: Computed tomography(CT) images of the experimental model before and after tooth movement were taken and reconstructed into three dimensional models for superimposition. The direction and the amount of tooth movement were measured and analyzed statistically. Results: The lingual and intrusive movements of the crown of the maxillary second molar were increased as the size of the NiTi wire increased. The roots of the maxillary second metals moved buccally except for the 0.016-in group. The intrusive movement of the roots of the maxillary second molars was increased as the size of the NiTi wire increased. Due to the use of orthodontic mini-implants, anchorage loss was under 0.2 mm on average. Conclusions: The $0.018{\times}0.025-in$ NiTi wire was most effective in lingual and intrusive movement of the maxillary second molar which was in scissors-bite position. Indirect skeletal anchorage with a single orthodontic mini-implant was rigid enough to prevent anchorage loss.

본 연구에서는 NiTi scissors-bite corrector를 세 가지 서로 다른 굵기 $0.018"{\times}0.025",\;0.016"{\times}0.022"$, 0.016"의 NiTi 와이어로 제작하였을 때 각각의 치아 이동 양상을 치아 이동 시뮬레이션 장치인 Calorific machine을 이용하여 3차원적으로 분석하고자 하였다. 가위교합에 이환된 상악 제2대구치 모형을 제작하고 제2소구치와 제1대구치 사이에 교정용 미니 임플랜트(orthodontic mini-implant)를 식립하여 제1대구치에 간접골성고정원을 설계하였다. 세 가지 굵기의 NiTi scissors-bite corrector를 부착하여 실험하였다. 치아의 이동 전후에 실험 모형은 computed tomography(CT)로 촬영하고 3차원 데이터로 변환하여 중첩하였다. 치아 이동 방향과 이동량을 계측하여, NiTi scissors-bite corrector 와이어 굵기에 따른 치아 이동 양상에 관한 통계적 유의성을 검정한 결과, 제2대구치 치관의 설측 이동량은 $0.018"{\times}0.025"$군(2.65 mm)이 가장 많았으며, 0.016"군(1.96 mm)과 통계적으로 유의한 차이를 보였다(p<0.05). 제2대구치 치관의 압하량은 $0.018"{\times}0.025"$군(2.35 mm), $0.016"{\times}0.022"$군(1.18 mm), 0.016"군(1.00 mm)으로 $0.018"{\times}0.025"$군이 나머지 두 군과 유의한 차이를 보였고(p<0.05), 치근의 압하량은 $0.018"{\times}0.025"$군(4.19 mm), $0.016"{\times}0.022"$군(3.29 mm), 0.016"군(2.24 mm)으로 세 군 간 모두 통계적 유의차를 보였다(p<0.05). 치아의 이동 양상을 관찰한 결과, 0.016"군에서는 제2대구치 치근의 협측 이동이 나타나지 않았다. 간접골성고정원으로 사용된 제1대구치의 고정원 소실은 0.2 mm 이하로 나타났다. 이상의 결과를 토대로 $0.018"{\times}0.025"$ NiTi 와이어로 제작한 NiTi scissors-bite corrector를 교정용 미니 임플랜트를 이용한 간접골성고정원과 함께 이용하였을 때, 최소한의 고정원의 소실과 함께 가장 큰 상악 제2대구치의 설측 이동 및 압하가 일어났다고 할 수 있다.

Keywords

References

  1. Ogihara K, Nakahara R, Koyanagi S, Suda M. Treatment of a Brodie bite by lower lateral expansion: a case report and fourth year follow-up. J Clin Pediatr Dent 1998;23:17-21
  2. Heikinheimo K, Salmi K, Myll$\ddot{a}$rniemi S. Identification of cases requiring orthodontic treatment. A longitudinal study. Swed Dent J Suppl 1982;15:71-7
  3. Thilander B, Wahlund S, Lennartsson B. The effect of early interceptive treatment in children with posterior cross-bite. Eur J Orthod 1984;6:25-34 https://doi.org/10.1093/ejo/6.1.25
  4. Pirttiniemi P, Kantomaa T. Relation of glenoid fossa morphology to mandibulofacial asymmetry, studied in dry human Lapp skulls. Acta Odontol Scand 1992;50:235-43 https://doi.org/10.3109/00016359209012768
  5. Kucher G, Weiland FJ. Goal-oriented positioning of upper second molars using the palatal intrusion technique. Am J Orthod Dentofacial Orthop 1996;110:466-8 https://doi.org/10.1016/S0889-5406(96)70051-3
  6. Enacar A, Pehlivanoglu M, Akcan CA. Molar intrusion with a palatal arch. J Clin Orthod 2003;37:557-9
  7. Nakamura Y, Murata K, Ogino T, Sekiya T, Hirashita A. Intrusion of overerupted upper second molars with a modified lingual arch. J Clin Orthod 200438:622-6
  8. Legan HL. Orthodontic planning and biomechanics for transverse distraction ostegenesis. Semin Orthod 2001;7:160-8 https://doi.org/10.1053/sodo.2001.26690
  9. Baeten LR. Canine retraction: a photoelastic study. Am J Orthod 1975;67:11-23 https://doi.org/10.1016/0002-9416(75)90125-6
  10. Burstone CJ, Pryputniewicz RJ. Holographic determination of centers of rotation produced by orthodontic forces. Am J Orthod 1980;77:396-409 https://doi.org/10.1016/0002-9416(80)90105-0
  11. Caputo AA, Chaconas SJ, Hayashi RK. Photoelastic visualization of orthodontic forces during canine retraction. Am J Orthod 1974;65:250-9 https://doi.org/10.1016/S0002-9416(74)90330-3
  12. Moss ML, Skalak R, Patel H, Sen K, Moss-Salentijn L, Shinozuka M, et al. Finite element method modeling of craniofacial growth. Am J Orthod 1985;87:453-72 https://doi.org/10.1016/0002-9416(85)90084-3
  13. Weijs WA, de Jongh HJ. Strain in mandibular alveolar bone during mastication in the rabbit. Arch Oral Biol 1977;22:667-75 https://doi.org/10.1016/0003-9969(77)90096-6
  14. Ogura M, Yamagata K, Kubota S, Kim JH, Kuroe K, Ito G. Comparison of tooth movements using Friction-Free and preadjusted edgewise bracket systems. J Clin Orthod 1996;30: 325-30
  15. Drescher D, Bourauel C, Thier M. Application of the orthodontic measurement and simulation system (OMSS) in orthodontics. Eur J Orthod 1991;13:169-78 https://doi.org/10.1093/ejo/13.3.169
  16. Rhee JN, Chun YS, Row J. A comparison between friction and frictionless mechanics with a new typodont simulation system. Am J Orthod Dentofacial Orthop 2001;119:292-9 https://doi.org/10.1067/mod.2001.112452
  17. Cha BK, Lee JY, Bae SH, Park DI. Preliminary study of future orthodontic model analysis: the orthodontic application of 3-dimensional reverse engineering technologies. J Korean Dent Assoc 2002;40:107-7
  18. Yun SW, Lim WH, Chong DR, Chun YS. Scissors-bite correction on second molar with a dragon helix appliance. Am J Orthod Dentofacial Orthop 2007;132:842-7 https://doi.org/10.1016/j.ajodo.2006.03.029
  19. Chun YS, Row J, Suh MS, Park IK. An experimental study on the dynamic tooth moving effects of two precision lingual archs(Pla) for correction of posterior scissor bite by the calorific machine. Korean J Orthod1998;28:29-41
  20. Proffit WR, Fields HW, Sarver DM. Contemporary orthodontics:. St.Louis: Mosby 2007:340
  21. Melsen B, Agerbaek N, Eriksen J, Terp S. New attachment through periodontal treatment and orthodontic intrusion. Am J Orthod Dentofacial Orthop 1988;94:104-16 https://doi.org/10.1016/0889-5406(88)90358-7

Cited by

  1. Cone beam CT를 이용한 안면골격형태에 따른 상기도 공간 분석 vol.39, pp.3, 2009, https://doi.org/10.4041/kjod.2009.39.3.136