DOI QR코드

DOI QR Code

APPROXIMATELY ADDITIVE MAPPINGS IN NON-ARCHIMEDEAN NORMED SPACES

  • Published : 2009.03.31

Abstract

We establish a new strategy to study the Hyers-Ulam-Rassias stability of the Cauchy and Jensen equations in non-Archimedean normed spaces. We will also show that under some restrictions, every function which satisfies certain inequalities can be approximated by an additive mapping in non-Archimedean normed spaces. Some applications of our results will be exhibited. In particular, we will see that some results about stability and additive mappings in real normed spaces are not valid in non-Archimedean normed spaces.

Keywords

References

  1. L. M. Arriola and W. A. Beyer, Stability of the Cauchy functional equation over p-adic fields, Real Anal. Exchange 31 (2005/06), no. 1, 125–132
  2. Y. S. Cho and H. M. Kim, Stability of functional inequalities with Cauchy-Jensen additive mappings, Abstr. Appl. Anal. (2007), Art. ID 89180, 13 pp https://doi.org/10.1155/2007/89180
  3. S. Czerwik, Functional Equations and Inequalities in Several Variables, World Scientific, River Edge, NJ, 2002
  4. D. Deses, On the representation of non-Archimedean objects, Topology Appl. 153 (2005), no. 5-6, 774–785 https://doi.org/10.1016/j.topol.2005.01.010
  5. W. Fechner, Stability of a functional inequality associated with the Jordan-von Neumann functional equation, Aequationes Math. 71 (2006), no. 1-2, 149–161 https://doi.org/10.1007/s00010-005-2775-9
  6. P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431–436 https://doi.org/10.1006/jmaa.1994.1211
  7. K. Hensel, Uber eine news Begrundung der Theorie der algebraischen Zahlen, Jahresber. Deutsch. Math. Verein 6 (1897), 83–88
  8. D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224 https://doi.org/10.1073/pnas.27.4.222
  9. D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser, Basel, 1998
  10. K. Jun and H. Kim, On the Hyers-Ulam-Rassias stability problem for approximately k-additive mappings and functional inequalities, Math. Inequal. Appl. 10 (2007), no. 4, 895–908
  11. S.-M. Jung, Hyers–Ulam–Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Palm Harbor, 2001
  12. S.-M. Jung, Hyers-Ulam-Rassias stability of Jensen's equation and its application, Proc. Amer. Math. Soc. 126 (1998), no. 11, 3137–3143 https://doi.org/10.1090/S0002-9939-98-04680-2
  13. A. K. Katsaras and A. Beoyiannis, Tensor products of non-Archimedean weighted spaces of continuous functions, Georgian Math. J. 6 (1999), no. 1, 33–44 https://doi.org/10.1023/A:1022926309318
  14. A. Khrennikov, Non-Archimedean Analysis: quantum paradoxes, dynamical systems and biological models, Mathematics and its Applications, 427. Kluwer Academic Publishers, Dordrecht, 1997
  15. Z. Kominek, On a local stability of the Jensen functional equation, Demonstratio Math. 22 (1989), no. 2, 499–507
  16. L. Li, J. Chung, and D. Kim, Stability of Jensen equations in the space of generalized functions, J. Math. Anal. Appl. 299 (2004), no. 2, 578–586
  17. A. K. Mirmostafaee, M. Mirzavaziri, and M. S. Moslehian, Fuzzy stability of the Jensen functional equation, Fuzzy Sets and Systems 159 (2008), no. 6, 730–738 https://doi.org/10.1016/j.fss.2007.07.011
  18. A. K. Mirmostafaee and M. S. Moslehian, Fuzzy versions of Hyers-Ulam-Rassias theorem, Fuzzy Sets and Systems 159 (2008), no. 6, 720–729 https://doi.org/10.1016/j.fss.2007.09.016
  19. P. J. Nyikos, On some non-Archimedean spaces of Alexandrof and Urysohn, Topology Appl. 91 (1999), 1–23 https://doi.org/10.1016/S0166-8641(97)00239-3
  20. J. C. Parnami and H. L. Vasudeva, On Jensen's functional equation, Aequationes Math. 43 (1992), no. 2-3, 211–218 https://doi.org/10.1007/BF01835703
  21. Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300
  22. J. Ratz, On inequalities associated with the Jordan-von Neumann functional equation, Aequationes Math. 66 (2003), no. 1-2, 191–200 https://doi.org/10.1007/s00010-003-2684-8
  23. M. Sal Moslehian and T. M. Rassias, Stability of functional equations in non-Archimedean spaces, Appl. Anal. Discrete Math. 1 (2007), no. 2, 325–334
  24. S. M. Ulam, Problems in Modern Mathematics, Science Editions, John Wiley & Sons, 1964

Cited by

  1. Stability of a general mixed additive-cubic functional equation in non-Archimedean fuzzy normed spaces vol.51, pp.9, 2010, https://doi.org/10.1063/1.3482073
  2. Stability of a Quartic Functional Equation vol.2014, 2014, https://doi.org/10.1155/2014/752146
  3. Stability of then-Dimensional Mixed-Type Additive and Quadratic Functional Equation in Non-Archimedean Normed Spaces vol.2012, 2012, https://doi.org/10.1155/2012/401762
  4. Approximately Orthogonal Additive Set-valued Mappings vol.53, pp.4, 2013, https://doi.org/10.5666/KMJ.2013.53.4.646
  5. Stability of mixed additive–quadratic Jensen type functional equation in various spaces vol.61, pp.9, 2011, https://doi.org/10.1016/j.camwa.2011.03.024
  6. Hyers-Ulam Stability of Cubic Mappings in Non-Archimedean Normed Spaces vol.50, pp.2, 2010, https://doi.org/10.5666/KMJ.2010.50.2.315
  7. A Fixed Point Approach to the Stability of a General Mixed AQCQ-Functional Equation in Non-Archimedean Normed Spaces vol.2010, 2010, https://doi.org/10.1155/2010/812545
  8. Nonlinear approximation of an ACQ-functional equation in nan-spaces vol.2011, pp.1, 2011, https://doi.org/10.1186/1687-1812-2011-60