References
- E. Cartan, Familles de surfaces isoparametriques dans les espacesa courbure constante, Ann. Mat. Pura Appl. 17 (1938), no. 1, 177–191
-
Q. M. Cheng, Hypersurfaces in a unit sphere
$S^{n+1}$ (1) with constant scalar curvature, J. London Math. Soc. (2) 64 (2001), no. 3, 755–768 https://doi.org/10.1112/S0024610701002587 - S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195–204 https://doi.org/10.1007/BF01425237
- S. S. Chern, Some new characterizations of the Euclidean sphere, Duke Math. J. 12 (1945), 279–290 https://doi.org/10.1215/S0012-7094-45-01222-1
- S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, III., 1968) pp. 59–75 Springer, New York, 1970
- H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), no. 4, 665–672 https://doi.org/10.1007/BF01444243
- H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35 (1997), no. 2, 327–351 https://doi.org/10.1007/BF02559973
- K. Nomizu and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969), 367–377
- M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207–213 https://doi.org/10.2307/2373587
- Y. J. Suh, Y. S. Choi, and H. Y. Yang, On space-like hypersurfaces with constant mean curvature in a Lorentz manifold, Houston J. Math. 28 (2002), no. 1, 47–70
- Y. J. Suh and H. Y. Yang, The scalar curvature of minimal hypersurfaces in a unit sphere, Commun. Contemp. Math. 9 (2007), no. 2, 183–200
- G.Wei, Rigidity theorem for hypersurfaces in a unit sphere, Monatsh. Math. 149 (2006), no. 4, 343–350 https://doi.org/10.1007/s00605-005-0378-0
Cited by
- Linear Weingarten submanifolds in unit sphere vol.106, pp.6, 2016, https://doi.org/10.1007/s00013-016-0881-7
- On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space vol.44, pp.1, 2013, https://doi.org/10.1007/s00574-013-0003-0
- A new characterization of complete linear Weingarten hypersurfaces in real space forms vol.261, pp.1, 2013, https://doi.org/10.2140/pjm.2013.261.33
- Rotational linear Weingarten surfaces into the Euclidean sphere vol.192, pp.2, 2012, https://doi.org/10.1007/s11856-012-0053-9
- LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM vol.52, pp.03, 2010, https://doi.org/10.1017/S0017089510000480
- LINEAR WEINGARTEN HYPERSURFACES WITH BOUNDED MEAN CURVATURE IN THE HYPERBOLIC SPACE vol.57, pp.03, 2015, https://doi.org/10.1017/S0017089514000548
- A MAXIMUM PRINCIPLE FOR COMPLETE HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD vol.29, pp.1, 2014, https://doi.org/10.4134/CKMS.2014.29.1.141
- LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS vol.51, pp.2, 2014, https://doi.org/10.4134/BKMS.2014.51.2.567
- Complete Linear Weingarten Spacelike Hypersurfaces Immersed in a Locally Symmetric Lorentz Space vol.63, pp.3-4, 2013, https://doi.org/10.1007/s00025-012-0237-y
- On the Gauss map of Weingarten hypersurfaces in hyperbolic spaces vol.47, pp.4, 2016, https://doi.org/10.1007/s00574-016-0203-5
- On the geometry of linear Weingarten hypersurfaces in the hyperbolic space vol.171, pp.3-4, 2013, https://doi.org/10.1007/s00605-013-0476-3
- LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACE vol.49, pp.2, 2012, https://doi.org/10.4134/BKMS.2012.49.2.271
- Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere vol.397, pp.2, 2013, https://doi.org/10.1016/j.jmaa.2012.08.003
- Complete Hypersurfaces with Two Distinct Principal Curvatures in a Space Form vol.67, pp.3-4, 2015, https://doi.org/10.1007/s00025-014-0413-3
- Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold vol.133, 2016, https://doi.org/10.1016/j.na.2015.11.026
- On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms vol.418, pp.1, 2014, https://doi.org/10.1016/j.jmaa.2014.03.090
- CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN EINSTEIN SPACETIMES vol.55, pp.03, 2013, https://doi.org/10.1017/S0017089512000754
- Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds vol.289, pp.11-12, 2016, https://doi.org/10.1002/mana.201400296
- Linear Weingarten submanifolds in the hyperbolic space pp.2191-0383, 2018, https://doi.org/10.1007/s13366-018-0420-8
- On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces vol.18, pp.4, 2018, https://doi.org/10.1515/advgeom-2018-0005
- Complete linear Weingarten spacelike submanifolds with higher codimension in the de Sitter space pp.1793-6977, 2019, https://doi.org/10.1142/S0219887819500506
- LW-surfaces with higher codimension and Liebmann’s Theorem in the hyperbolic space pp.2198-2759, 2019, https://doi.org/10.1007/s40574-019-00196-7