DOI QR코드

DOI QR Code

LINEAR WEINGARTEN HYPERSURFACES IN A UNIT SPHERE

  • Li, Haizhong (DEPARTMENT OF MATHEMATICAL SCIENCES TSINGHUA UNIVERSITY) ;
  • Suh, Young-Jin (DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY) ;
  • Wei, Guoxin (DEPARTMENT OF MATHEMATICS SAGA UNIVERSITY)
  • Published : 2009.03.31

Abstract

In this paper, we have considered linear Weingarten hypersurfaces in a sphere and obtained some rigidity theorems. The purpose of this paper is to give some extension of the results due to Cheng-Yau [3] and Li [7].

Keywords

References

  1. E. Cartan, Familles de surfaces isoparametriques dans les espacesa courbure constante, Ann. Mat. Pura Appl. 17 (1938), no. 1, 177–191
  2. Q. M. Cheng, Hypersurfaces in a unit sphere $S^{n+1}$(1) with constant scalar curvature, J. London Math. Soc. (2) 64 (2001), no. 3, 755–768 https://doi.org/10.1112/S0024610701002587
  3. S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature, Math. Ann. 225 (1977), no. 3, 195–204 https://doi.org/10.1007/BF01425237
  4. S. S. Chern, Some new characterizations of the Euclidean sphere, Duke Math. J. 12 (1945), 279–290 https://doi.org/10.1215/S0012-7094-45-01222-1
  5. S. S. Chern, M. do Carmo, and S. Kobayashi, Minimal submanifolds of a sphere with second fundamental form of constant length, Functional Analysis and Related Fields (Proc. Conf. for M. Stone, Univ. Chicago, Chicago, III., 1968) pp. 59–75 Springer, New York, 1970
  6. H. Li, Hypersurfaces with constant scalar curvature in space forms, Math. Ann. 305 (1996), no. 4, 665–672 https://doi.org/10.1007/BF01444243
  7. H. Li, Global rigidity theorems of hypersurfaces, Ark. Mat. 35 (1997), no. 2, 327–351 https://doi.org/10.1007/BF02559973
  8. K. Nomizu and B. Smyth, A formula of Simons' type and hypersurfaces with constant mean curvature, J. Differential Geometry 3 (1969), 367–377
  9. M. Okumura, Hypersurfaces and a pinching problem on the second fundamental tensor, Amer. J. Math. 96 (1974), 207–213 https://doi.org/10.2307/2373587
  10. Y. J. Suh, Y. S. Choi, and H. Y. Yang, On space-like hypersurfaces with constant mean curvature in a Lorentz manifold, Houston J. Math. 28 (2002), no. 1, 47–70
  11. Y. J. Suh and H. Y. Yang, The scalar curvature of minimal hypersurfaces in a unit sphere, Commun. Contemp. Math. 9 (2007), no. 2, 183–200
  12. G.Wei, Rigidity theorem for hypersurfaces in a unit sphere, Monatsh. Math. 149 (2006), no. 4, 343–350 https://doi.org/10.1007/s00605-005-0378-0

Cited by

  1. Linear Weingarten submanifolds in unit sphere vol.106, pp.6, 2016, https://doi.org/10.1007/s00013-016-0881-7
  2. On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space vol.44, pp.1, 2013, https://doi.org/10.1007/s00574-013-0003-0
  3. A new characterization of complete linear Weingarten hypersurfaces in real space forms vol.261, pp.1, 2013, https://doi.org/10.2140/pjm.2013.261.33
  4. Rotational linear Weingarten surfaces into the Euclidean sphere vol.192, pp.2, 2012, https://doi.org/10.1007/s11856-012-0053-9
  5. LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM vol.52, pp.03, 2010, https://doi.org/10.1017/S0017089510000480
  6. LINEAR WEINGARTEN HYPERSURFACES WITH BOUNDED MEAN CURVATURE IN THE HYPERBOLIC SPACE vol.57, pp.03, 2015, https://doi.org/10.1017/S0017089514000548
  7. A MAXIMUM PRINCIPLE FOR COMPLETE HYPERSURFACES IN LOCALLY SYMMETRIC RIEMANNIAN MANIFOLD vol.29, pp.1, 2014, https://doi.org/10.4134/CKMS.2014.29.1.141
  8. LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS vol.51, pp.2, 2014, https://doi.org/10.4134/BKMS.2014.51.2.567
  9. Complete Linear Weingarten Spacelike Hypersurfaces Immersed in a Locally Symmetric Lorentz Space vol.63, pp.3-4, 2013, https://doi.org/10.1007/s00025-012-0237-y
  10. On the Gauss map of Weingarten hypersurfaces in hyperbolic spaces vol.47, pp.4, 2016, https://doi.org/10.1007/s00574-016-0203-5
  11. On the geometry of linear Weingarten hypersurfaces in the hyperbolic space vol.171, pp.3-4, 2013, https://doi.org/10.1007/s00605-013-0476-3
  12. LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN LOCALLY SYMMETRIC LORENTZ SPACE vol.49, pp.2, 2012, https://doi.org/10.4134/BKMS.2012.49.2.271
  13. Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere vol.397, pp.2, 2013, https://doi.org/10.1016/j.jmaa.2012.08.003
  14. Complete Hypersurfaces with Two Distinct Principal Curvatures in a Space Form vol.67, pp.3-4, 2015, https://doi.org/10.1007/s00025-014-0413-3
  15. Complete hypersurfaces with two distinct principal curvatures in a locally symmetric Riemannian manifold vol.133, 2016, https://doi.org/10.1016/j.na.2015.11.026
  16. On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms vol.418, pp.1, 2014, https://doi.org/10.1016/j.jmaa.2014.03.090
  17. CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN EINSTEIN SPACETIMES vol.55, pp.03, 2013, https://doi.org/10.1017/S0017089512000754
  18. Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds vol.289, pp.11-12, 2016, https://doi.org/10.1002/mana.201400296
  19. Linear Weingarten submanifolds in the hyperbolic space pp.2191-0383, 2018, https://doi.org/10.1007/s13366-018-0420-8
  20. On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces vol.18, pp.4, 2018, https://doi.org/10.1515/advgeom-2018-0005
  21. Complete linear Weingarten spacelike submanifolds with higher codimension in the de Sitter space pp.1793-6977, 2019, https://doi.org/10.1142/S0219887819500506
  22. LW-surfaces with higher codimension and Liebmann’s Theorem in the hyperbolic space pp.2198-2759, 2019, https://doi.org/10.1007/s40574-019-00196-7