References
- J. Aczel and J. Dhombres, Functional Equations in Several Variables, Encyclopedia of Mathematics and its Applications, 31. Cambridge University Press, Cambridge, 1989
- J. A. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411–416
- J. A. Baker, J. Lawrence, and F. Zorzitto, The stability of the equation f(x + y) = f(x)f(y), Proc. Amer. Math. Soc. 74 (1979), no. 2, 242–246
- J. Chang and J. Chung, The stability of the sine and cosine functional equations in Schwartz distributions, Bull. Korean Math. Soc. 46 (2009), no. 1, 87–97 https://doi.org/10.4134/BKMS.2009.46.1.087
- J. Chung, Hyers-Ulam stability theorems for Pexider equations in the space of Schwartz distributions, Arch. Math. (Basel) 84 (2005), no. 6, 527–537
- J. Chung, A distributional version of functional equations and their stabilities, Nonlinear Anal. 62 (2005), no. 6, 1037–1051 https://doi.org/10.1016/j.na.2005.04.016
- I. Fenyo, Uber eine Losungsmethode gewisser Funktionalgleichungen, Acta Math. Acad. Sci. Hungar. 7 (1956), 383–396 https://doi.org/10.1007/BF02020533
- I. M. Gelfand and G. E. Shilov, Generalized Functions. Vol. 2, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1968
- L. Hormander, The Analysis of Linear Partial Differential Operators. I, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 256. Springer-Verlag, Berlin, 1983
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of Functional Equations in Several Variables, Birkhauser Boston, Inc., Boston, MA, 1998
- S.-M. Jung, Hyers-Ulam-Rassias Stability of Functional Equations in Mathematical Analysis, Hadronic Press, Inc., Palm Harbor, FL, 2001
- Th. M. Rassias, Stability of mappings of Hyers-Ulam type, Hadronic Press Collection of Original Articles, 111–116. Hadronic Press, Inc., Palm Harbor, FL, 1994
- L. Schwartz, Theorie des distributions, Hermann, Paris, 1966
- D. V. Widder, The Heat Equation, Academic Press, New York, 1975