DOI QR코드

DOI QR Code

Hemodynamic Responses of Rat Brain Measured by Near-infrared Spectroscopy During Various Whisker Stimulations

  • Lee, Seung-Duk (Department of Biomedical Engineering, Yonsei University) ;
  • Koh, Dalk-Won (Department of Biomedical Engineering, Yonsei University) ;
  • Kwon, Ki-Woon (Department of Biomedical Engineering, Yonsei University) ;
  • Lee, Hyun-Joo (Department of Physiology, Hallym University) ;
  • Lang, Yiran (Department of Physiology, Hallym University) ;
  • Shin, Hyung-Cheul (Department of Physiology, Hallym University) ;
  • Kim, Beop-Min (Department of Biomedical Engineering, Korea University)
  • 투고 : 2008.08.25
  • 심사 : 2008.12.19
  • 발행 : 2009.03.25

초록

NIRS (Near-infrared spectroscopy) is a relatively, new, non-invasive, and non-ionizing method of measuring hemodynamic responses in thick biological tissues such as the cerebral cortex. In this study, we measured the hemodynamic responses of the rat barrel cortex to whisker stimulation by using a frequency-domain NIRS system. We designed multiple optical probes comprising multi-mode optical fibers and manipulating arms, both of which can be easily applied to small animals. Various electrical stimulations were applied to rat whiskers at different voltage levels and stimulation frequencies. Our results show that the hemodynamic responses are highly dependent on the stimulation voltage level, and not so much on stimulation frequency. This paper suggests that NIRS technology is highly suitable for the study of small animal brains.

키워드

참고문헌

  1. T. Misgeld and M. Kerschensteiner, 'In vivo imaging of the diseased nervous system,' Nat. Rev. Neurosci. 7, 449-63 (2006) https://doi.org/10.1038/nrn1905
  2. J. Skoch, A. Dunn, B. T. Hyman, and B. J. Bacskai, 'Development of an optical approach for noninvasive imaging of Alzheimer's disease pathology,' J. Biomed. Opt. 10, 11007 (2005) https://doi.org/10.1117/1.1846075
  3. J. A. Helpern, S. P. Lee, M. F. Falangola, V. V. Dyakin, A. Bogart, B. Ardekani, K. Duff, C. Branch, T. Wisniewski, M. J. de Leon, O. Wolf, J. O'Shea, and R. A. Nixon, 'MRI assessment of neuropathology in a transgenic mouse model of Alzheimer's disease,' Magn. Reson. Med. 51, 794-798 (2004) https://doi.org/10.1002/mrm.20038
  4. F. F. Jobsis, 'Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters,' Science 198, 1264-1267 (1977) https://doi.org/10.1126/science.929199
  5. A. Y. Bluestone, M. Stewart, J. Lasker, G. S. Abdoulaev, and A. H. Hielscher., 'Three-dimensional optical tomographic brain imaging in small animals, part 1: hypercapnia,' J. Biomed. Opt. 9, 1046-1062 (2004) https://doi.org/10.1117/1.1784471
  6. J. P. Culver, T. Durduran, D. Furuya, C. Cheung, J. H. Greenberg, and A. G. Yodh, 'Diffuse optical tomography of cerebral blood flow, oxygenation, and metabolism in rat during focal ischemia,' J. Cereb. Blood Flow Metab. 23, 911-924 (2003) https://doi.org/10.1097/01.WCB.0000076703.71231.BB
  7. A. M. Siegel, J. P. Culver, J. B. Mandeville, and D. A. Boas, 'Temporal comparison of functional brain imaging with diffuse optical tomography and fMRI during rat forepaw stimulation,' Phys. Med. Biol. 48, 1391-1403 (2003) https://doi.org/10.1088/0031-9155/48/10/311
  8. M. A. Franceschini, I. Nissila, W. Wu, S. G. Diamond, G. Bonmassar, and D. A. Boas, Coupling between somatosensory evoked potentials and hemodynamic response in the rat,' Neuroimage 41, 189-203 (2008) https://doi.org/10.1016/j.neuroimage.2008.02.061
  9. N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, and A. Oeltermann, 'Neurophysiological investigation of the basis of the fMRI signal,' Nature 412, 150-157 (2001) https://doi.org/10.1038/35084005
  10. T. Matsuura and I. Kanno, 'Quantitative and temporal relationship between local cerebral blood flow and neuronal activation induced by somatosensory stimulation in rats,' Neurosci. Res. 40, 281-290 (2001) https://doi.org/10.1016/S0168-0102(01)00236-X
  11. A. Devor, A. K. Dunn, M. L. Andermann, I. Ulbert, D. A. Boas, and A. M. Dale, 'Coupling of total hemoglobin concentration, oxygenation, and neural activity in rat somatosensory cortex,' Neuron 39, 353-359 (2003) https://doi.org/10.1016/S0896-6273(03)00403-3
  12. M. Jones, N. Hewson-Stoate, J. Martindale, P. Redgrave, and J. Mayhew, 'Nonlinear coupling of neural activity and CBF in rodent barrel cortex,' Neuroimage 22, 956-965 (2004) https://doi.org/10.1016/j.neuroimage.2004.02.007
  13. A. Norup Nielsen and M. Lauritzen, 'Coupling and uncoupling of activity-dependent increases of neuronal activity and blood flow in rat somatosensory cortex,' J. Physiol. 533, 773-785 (2001) https://doi.org/10.1111/j.1469-7793.2001.00773.x
  14. D. G. Nair, 'About being BOLD,' Brain Res. Rev. 50, 229-243 (2005) https://doi.org/10.1016/j.brainresrev.2005.07.001
  15. C. I. Moore, S. B. Nelson, and M. Sur, 'Dynamics of neuronal processing in rat somatosensory cortex,' Trends. Neurosci. 22, 513-520 (1999) https://doi.org/10.1016/S0166-2236(99)01452-6
  16. D. T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, 'Estimation of optical pathlength through tissue from direct time of flight measurement,' Phys. Med. Biol. 33, 1433-1442 (1988) https://doi.org/10.1088/0031-9155/33/12/008
  17. M. Wolf, U. Wolf, V. Toronov, A. Michalos, L. A. Paunescu, J. H. Choi, and E. Gratton, 'Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study,' Neuroimage 16, 704-712 (2002) https://doi.org/10.1006/nimg.2002.1128
  18. S. Fantini, 'A haemodynamic model for the physiological interpretation of in vivo measurements of the concentration and oxygen saturation of haemoglobin,' Phys. Med. Biol. 47, N249-N257 (2002) https://doi.org/10.1088/0031-9155/47/18/402
  19. N. Prakash, J. D. Biag, S. A. Sheth, S. Mitsuyama, J. Theriot, C. Ramachandra, and A. W. Toga, 'Temporal profiles and 2-dimensional oxy-, deoxy-, and total-hemoglobin somatosensory maps in rat versus mouse cortex,' Neuroimage 37, S27-S36 (2007) https://doi.org/10.1016/j.neuroimage.2007.04.063
  20. J. Mayhew, D. Johnston, J. Berwick, M. Jones, P. Coffey, and Y. Zheng, 'Spectroscopic analysis of neural activity in brain: increased oxygen consumption following activation of barrel cortex,' Neuroimage 12, 664-675 (2000) https://doi.org/10.1006/nimg.2000.0656
  21. A. J. Blood, S. M. Narayan, and A. W. Toga, 'Stimulus parameters influence characteristics of optical intrinsic signal responses in somatosensory cortex,' J. Cereb. Blood Flow Metab. 15, 1109-1121 (1995) https://doi.org/10.1038/jcbfm.1995.138

피인용 문헌

  1. Depth-dependent cerebral hemodynamic responses following Direct Cortical Electrical Stimulation (DCES) revealed by in vivo dual-optical imaging techniques vol.20, pp.7, 2012, https://doi.org/10.1364/OE.20.006932
  2. Estimation of directional coupling between cortical areas using Near-Infrared Spectroscopy (NIRS) vol.18, pp.6, 2010, https://doi.org/10.1364/OE.18.005730
  3. Odor-Dependent Hemodynamic Responses Measured with NIRS in the Main Olfactory Bulb of Anesthetized Rats vol.20, pp.4, 2011, https://doi.org/10.5607/en.2011.20.4.189