DOI QR코드

DOI QR Code

Parametric Studies of Pulsed Laser Deposition of Indium Tin Oxide and Ultra-thin Diamond-like Carbon for Organic Light-emitting Devices

  • 투고 : 2008.12.16
  • 심사 : 2009.02.06
  • 발행 : 2009.03.25

초록

Device quality indium tin oxide (ITO) films are deposited on glass substrates and ultra-thin diamond-like carbon films are deposited as a buffer layer on ITO by a pulsed Nd:YAG laser at 355 nm and 532 nm wavelength. ITO films deposited at room temperature are largely amorphous although their optical transmittances in the visible range are > 90%. The resistivity of their amorphous ITO films is too high to enable an efficient organic light-emitting device (OLED), in contrast to that deposited by a KrF laser. Substrate heating at $200^{\circ}C$ with laser wavelength of 355 nm, the ITO film resistivity decreases by almost an order of magnitude to $2{\times}10^{-4}\;{\Omega}\;cm$ while its optical transmittance is maintained at > 90%. The thermally induced crystallization of ITO has a preferred <111> directional orientation texture which largely accounts for the lowering of film resistivity. The background gas and deposition distance, that between the ITO target and the glass substrate, influence the thin-film microstructures. The optical and electrical properties are compared to published results using other nanosecond lasers and other fluence, as well as the use of ultra fast lasers. Molecularly doped, single-layer OLEDs of ITO/(PVK+TPD+$Alq_3$)/Al which are fabricated using pulsed-laser deposited ITO samples are compared to those fabricated using the commercial ITO. Effects such as surface texture and roughness of ITO and the insertion of DLC as a buffer layer into ITO/DLC/(PVK+TPD+$Alq_3$)/Al devices are investigated. The effects of DLC-on-ITO on OLED improvement such as better turn-on voltage and brightness are explained by a possible reduction of energy barrier to the hole injection from ITO into the light-emitting layer.

키워드

참고문헌

  1. H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, Semiconducting Transparent Thin Films (Institute of Physics Publishing, Bristol and Philadelphia, 1995)
  2. L. Meng and M. P. dos Santos, 'Properties of indium tin oxide (ITO) films prepared by r.f. reactive magnetron sputtering at different pressures,' Thin Solid Films 303, 151-155 (1997) https://doi.org/10.1016/S0040-6090(97)00050-3
  3. C. G. Choi, K. No, W. J. Lee, H. G. Kim, S. O. Jung, W. J. Lee, W. S. Kim, S. J. Kim, and C. Yoon, 'Effects of oxygen partial pressure on the microstructure and electrical properties of indium tin oxide film prepared by d.c. magnetron sputtering,' Thin Solid Films 258, 274-278 (1995) https://doi.org/10.1016/0040-6090(94)06354-0
  4. H. Bisht, H.-T. Eun, A. Mehrtens, and M. A. Aegerter, 'Comparison of spray pyrolyzed FTO, ATO and ITO coatings for flat and bent glass substrates,' Thin Solid Films 351, 109-114 (1999) https://doi.org/10.1016/S0040-6090(99)00254-0
  5. J. P. Zheng and H. S. Kwok, 'Low resistivity indium tin oxide films by pulsed laser deposition,' Appl. Phys. Lett. 63, 1-3 (1993) https://doi.org/10.1063/1.109736
  6. H. Kim, C. M. Gilmore, A. Pique, J. S. Horwitz, H. Mattoussi, H. Murata, Z. H. Kafafi, and D. B. Chrisey, 'Electrical, optical, and structural properties of indium–tin–oxide thin films for organic light-emitting devices,' J. Appl. Phys. 86, 6451-6461 (1999) https://doi.org/10.1063/1.371708
  7. H. Kim, J. S. Horwitz, G. P. Kushto, Z. H. Kafafi, and D. B. Chrisey, 'Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes,' Appl. Phys. Lett. 79, 284-286 (2001) https://doi.org/10.1063/1.1383568
  8. F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, 'Highly conducting indium tin oxide (ITO) thin films deposited by pulsed laser ablation,' Thin Solid Films 350, 79-84 (1999) https://doi.org/10.1016/S0040-6090(99)00278-3
  9. H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, 'Electrical properties of crystalline ITO films prepared at room temperature by pulsed laser deposition on plastic substrates,' Thin Solid Films 411, 32-35 (2002) https://doi.org/10.1016/S0040-6090(02)00169-4
  10. M. A. Morales-Paliza, M .B. Huang, and L. C. Feldman, 'Nitrogen as background gas in pulsed-laser deposition growth of indium tin oxide films at room temperature,' Thin Solid Films 429, 220-224 (2003) https://doi.org/10.1016/S0040-6090(03)00159-7
  11. E. Holmelund, B. Thestrup, J. Schou, N. B. Larsen, M. M. Nielsen, E. Johnson, and S. Tougaard, 'Capacitance–voltage characteristics of liquid crystal displays with periodic interdigital electrodes,' Appl. Phys. A 74, 147-149 (2002) https://doi.org/10.1007/s003390100976
  12. B. Thestrup, J. Schou, A. Nordskov, N. B. Larsen, 'Electrical and optical properties of thin indium tin oxide films produced by pulsed laser ablation in oxygen or rare gas atmospheres,' Appl. Surf. Sci. 142, 248-252 (1999) https://doi.org/10.1016/S0169-4332(98)00659-X
  13. J. B. Choi, J. H. Kim, K. A. Jeon, and S. Y. Lee, 'Properties of ITO films on glass fabricated by pulsed laser deposition,' Mater. Sci. Eng. B 102, 376-379 (2003) https://doi.org/10.1016/S0921-5107(02)00625-6
  14. T. K. Yong, S. S. Yap, G. Safran, and T. Y. Tou, 'Pulsed Nd: YAG laser depositions of ITO and DLC films for OLED applications,' Appl. Surf. Sci 253, 4955-4959 (2007) https://doi.org/10.1016/j.apsusc.2006.11.008
  15. K. Lminouni, C. Legrand, C. Dufour, and A. Chapoton, 'Diamond-like carbon films as electron-injection layer in organic light emitting diodes,' Appl. Phys. Lett. 78, 2437-2439 (2001) https://doi.org/10.1063/1.1367900
  16. D. W. Han, S. M. Jeong, S. J. Lee, N. C. Yang, and D. H. Suh, 'Electron injection enhancement by diamondlike carbon film in organic electroluminescence devices,' Thin Solid Films 420-421, 190-194 (2002) https://doi.org/10.1016/S0040-6090(02)00751-4
  17. S. H. Choi, S. M. Jeong, W. H. Koo, S. J. Jo, H. K. Baik, S. J. Lee, K. M. Song, and D. W. Han, 'Diamond-like carbon as a buffer layer in polymeric electroluminescent device,' Thin Solid Films 483, 351-357 (2005) https://doi.org/10.1016/j.tsf.2004.12.040
  18. B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, 'Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,' Appl. Phys. Lett. 86, 63506-1-3 (2005) https://doi.org/10.1063/1.1796527
  19. S. S. Yap, R. B. Yang, H. Y. Yow, and T. Y. Tou, 'Enhanced reliability by diamond-like carbon in single-layer organic light emitting diodes,' Electronic Letters 42, 114-115 (2006) https://doi.org/10.1049/el:20063947
  20. R. B. H. Tahar, T. Ban, Y. Ohya, and Y. Takahashi, 'Tin doped indium oxide thin films: electrical properties,' J. Appl. Phys. 83, 2631-2645 (1998) https://doi.org/10.1063/1.367025
  21. C. H. Yi, Y. Y. Shigesato, I. Yasuui, and S. Takaki, 'Microstructure of low-resistivity tin-doped indium oxide films deposited at 150 $\sim200^\circC$,' Jpn. J. Appl. Phys. 34, L244-L247 (1995) https://doi.org/10.1143/JJAP.34.L244
  22. F. O. Adurodija, H. Izumi, T. Ishihara, H. Yoshioka, and M. Motoyama, 'Effects of stress on the structure of indium-tin-oxide thin films grown by pulsed laser deposition,' J. Mater. Sci.: Mater. Electron. 12, 57-61 (2001) https://doi.org/10.1023/A:1011224813782
  23. E. Burstein, 'Anomalous optical absorption limit in InSb,' Phys. Rev. 93, 632-633 (1954) https://doi.org/10.1103/PhysRev.93.632
  24. G. Wantz, L.Hirsch, N. Huby, L.Vignau, J. F. Silvain, A. S. Barriere, and J. P. Parneix, 'Correlation between the indium tin oxide morphology and the performances of polymer light-emitting diodes,' Thin Solid Films 485, 247-251 (2005) https://doi.org/10.1016/j.tsf.2005.03.022
  25. F. Li, H. Tang, J. Shinar, O. Resto, and S. Z. Weisz, 'Effects of aquaregia treatment of indium–tin–oxide substrates on the behavior of double layered organic lightemitting diodes,' Appl. Phys. Lett. 70, 2741-2743 (1997) https://doi.org/10.1063/1.119008
  26. S. A. Haque, S. Koops, N. Tokmoldin, J. R. Durrant, J. Huang, D. D. C. Bradley, and E. Palomares, 'A multilayered polymer light-emitting diode using a nanocrystalline metal-oxide film as a charge-injection electrode,' Adv. Mater. 19, 683-687 (2007) https://doi.org/10.1002/adma.200601619
  27. A. C. Ferrari and J. Robertson, 'Resonant raman spectroscopy of disordered, amorphous, and diamond-like carbon,' Phys. Rev. B 64, 075414-13 (2001) https://doi.org/10.1103/PhysRevB.64.075414
  28. C. Casiraghi, A. C. Ferrari, R. Ohr, A. J. Flewitt, D. P. Chu, and J. Robertson, 'Dynamic roughening of tetrahedral amorphous carbon,' Phys. Rev. Lett. 91, 226104-1-4 (2003) https://doi.org/10.1103/PhysRevLett.91.226104
  29. K. Yamamoto, Y. Koga, S. Fujiwara, F. Kokai, and R. B. Heimann, 'Dependence of the sp3 bond fraction on the laser wavelength in thin carbon films prepared by pulsed laser deposition,' Appl. Phys. A: Mater. 66, 115-117 (1998) https://doi.org/10.1007/s003390050647
  30. T. Yoshitake, T. Nishiyama, H. Aoki, K. Suizu, K. Takahashi, and K. Nagayama, 'The effects of substrate temperature and laser wavelength on the formation of carbon thin films by pulsed laser deposition,' Diamond Relat. Mater. 8, 463-465 (1999) https://doi.org/10.1016/S0925-9635(98)00348-3
  31. J. Robertson, 'Mechanism of $\sp^3$ bond formation in the growth of diamond-like carbon,' Diamond Relat. Mater. 14, 942-948 (2005) https://doi.org/10.1016/j.diamond.2004.11.028
  32. Y. Zhao, S. Y. Liu, and J. Y. Hou, 'Effect of LiF buffer layer on the performance of organic electroluminescent devices,' Thin Solid Films 397, 208-210 (2001) https://doi.org/10.1016/S0040-6090(01)01412-2
  33. J. Xiao, Z. B. Deng, C. J. Liang, D. H. Xu, Y. Xu, and D. Guo, 'Effect of LiF buffer layer on the performance of organic electroluminescent devices,' Physica E 28, 323-327 (2005) https://doi.org/10.1016/j.physe.2005.04.001
  34. H. J. Li, R. H. Zhu, X. Y. Li, Z. J. Wang, and B. C. Yang, 'Determination of the optimal thickness of inserted LiF in bilayer organic light-emitting devices,' Solid State Commun. 144, 445-447 (2007) https://doi.org/10.1016/j.ssc.2007.09.018
  35. K. Han, Y. Yi, W. J. Song, S. W. Cho, P. E. Jeon, H. Lee, C. N. Whang, and K. Jeong, 'Dual enhancing properties of LiF with varying positions inside organic light-emitting devices,' Org. Electron. 9, 30-38 (2008) https://doi.org/10.1016/j.orgel.2007.07.005
  36. H. You, Y. F. Dai, Z. Q. Zhang, and D. G. Ma, 'Improved performances of organic light-emitting diodes with metal oxide as anode buffer,' J. Appl. Phys. 101, 026105-1-3 (2007) https://doi.org/10.1063/1.2430511
  37. H. W. Choi, S. Y. Kim, W. K. Kim, K. Hong, and J. L. Lee, 'Effect of magnesium oxide buffer layer on performance of inverted top-emitting organic light-emitting diodes,' J. Appl. Phys. 100, 064106-1-6 (2006) https://doi.org/10.1063/1.2349552
  38. H. W. Choi, S. Y. Kim, W. K. Kim, and J. L. Lee, 'Enhancement of electron injection in inverted topemitting organic light-emitting diodes using an insulating magnesium oxide buffer layer,' Appl. Phys. Lett. 87, 082102-1-3 (2005) https://doi.org/10.1063/1.2033129
  39. S. T. Zhang, Y. C. Zhou, J. M. Zhao, Y. Q. Zhan, Z. J. Wang, Y. Wu, X. M. Ding, and X. Y. Hou, 'Role of hole playing in improving performance of organic light-emitting devices with an Al2O3 layer inserted at the cathode-organic interface,' Appl. Phys. Lett. 89, 043502-1-3 (2006)
  40. Z. B. Deng, X. M. Ding, S. T. Lee, and W. A. Gambling, 'Enhanced brightness and efficiency in organic electroluminescent devices using $\SiO_2$ buffer layers,' Appl. Phys. Lett. 74, 2227-2229 (1999) https://doi.org/10.1063/1.123809
  41. B. J. Chen and X. W. Sun, 'The role of $\MgF_2$ buffer layer in tris-(8-hydroxyquinoline)aluminium-based organic light-emitting devices with Mg:Ag cathode,' Semicon. Sci. Tech. 20, 801-804 (2005) https://doi.org/10.1088/0268-1242/20/8/028
  42. Z. X. Wu, L. D. Wang, H. F. Wang, Y. D. Gao, and Y. Qiu, 'Charge tunneling injection through a thin teflon film between the electrodes and organic semiconductor layer: relation to morphology of the teflon film,' Phys. Rev. B. 74, 165307-1-7 (2006) https://doi.org/10.1103/PhysRevB.74.165307
  43. B. J. Chen, X. W. Sun, B. K. Tay, L. Ke, and S. J. Chua, 'Improvement of efficiency and stability of polymer light-emitting devices by modifying indium tin oxide anode surface with ultrathin tetrahedral amorphous carbon film,' Appl. Phys. Lett. 86, 063506-1-3 (2005) https://doi.org/10.1063/1.1796527
  44. S. T. Zhang, X. M. Ding, J. M. Zhao, H. Z. Shi, J. He, Z. H. Xiong, H. J. Ding, E. G. Obbard, Y. Q. Zhan, W. Huang, and X. Y. Hou, 'Buffer-layer-induced barrier reduction: role of tunneling in organic light-emitting devices,' Appl. Phys. Lett. 84, 425-427 (2004) https://doi.org/10.1063/1.1641166
  45. X. J. Wang, J. M. Zhao, Y. C. Zhou, X. Z. Wang, S. T. Zhang, Y. Q. Zhan, Z. Xu, H. J. Ding, G. Y. Zhong, H. Z. Shi, Z. H. Xiong, Y. Liu, Z. J. Wang, E. G. Obbard, X. M. Ding, W. Huang, and X. Y. Hou, 'Enhancement of electron injection in organic light-emitting devices using an Ag/LiF cathode,' J. Appl. Phys. 95, 3828-3830 (2004) https://doi.org/10.1063/1.1655676
  46. J. M. Zhao, Y. Q. Zhan, S. T. Zhang, X. J. Wang, Y. C. Zhou, Y. Wu, Z. J. Wang, X. M. Ding, and X. Y. Hou, 'Mechanisms of injection enhancement in organic light-emitting diodes through insulating buffer,' Appl. Phys. Lett. 84, 5377-5379 (2004) https://doi.org/10.1063/1.1764943
  47. M. Goes, J. W. Verhoeven, H. Hofstraat, and K. Brunner, 'OLED and PLED devices employing electrogenerated, intramolecular charge-transfer fluorescence,' Chem. Phys. Chem. 4, 349-358 (2003) https://doi.org/10.1002/cphc.200390061

피인용 문헌

  1. Paradoxical hole injection enhancement by contamination on the indium tin oxide surface vol.58, pp.2, 2019, https://doi.org/10.7567/1347-4065/aafa6c