DOI QR코드

DOI QR Code

High-resolution Spectroscopy of the Nickel-like Molybdenum X-ray Laser Toward the Generation of Circularly Polarized X-ray Laser

  • Hasegawa, Noboru (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Sasaki, Akira (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Yamatani, Hiroshi (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Kishimoto, Maki (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Tanaka, Momoko (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Ochi, Yoshihiro (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Nishikino, Masaharu (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Kunieda, Yuichi (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Kawachi, Tetsuya (Quantum Beam Science Directorate, Japan Atomic Energy Agency (JAEA)) ;
  • Yoneda, Hitoki (Institute for Laser Science, University of Electro-Communications) ;
  • Iwamae, Atsushi (Department of Engineering, Faculty of Engineering, Kyoto University)
  • Received : 2008.12.16
  • Accepted : 2009.02.26
  • Published : 2009.03.25

Abstract

We attempted the first measurement of the spectral width of the nickel-like molybdenum x-ray laser (${\lambda}\;=\;18.895\;nm$) by use of a high-resolution spectrometer in order to determine the strength of the magnetic field required for the generation of a circularly polarized x-ray laser. The spectral width was measured to be ${\Delta}{\lambda}\;=\;18\;m{\AA}$ under the substantial lasing condition. The magnetic field required for the generation of a circularly polarized x-ray laser was 40 T. The splitting of the x-ray laser line was clearly obtained under 15 T external magnetic field. The strength of the magnetic field estimated from the splitting of the x-ray laser line was large compared with the external magnetic field. It implies that there might be an alternative mechanism for enhancement of the magnetic field in the gain medium plasma.

Keywords

References

  1. G. D. Fasman Eds., Circular Dichroism and the Conformational Analysis of Biomolecules (Plenum Press, New York, 1996)
  2. K. Hirano, K. Okitsu, A. Momose, and Y. Amemiya, 'Recent research related to the polarization and/or phase of SR,' Advances in X-Ray Chemical Analysis Japan 33, 25-43 (2001)
  3. M. Tanaka, K. Nakagawa, A. Agui, K. Fujii, and A. Yokoya, 'First observation of natural circular dichroism for biomolecules in soft x-ray region studied with a polarizing undulator,' Phys. Scr. T115, 873-876 (2005) https://doi.org/10.1238/Physica.Topical.115a00873
  4. J. A. Koch, B. J. MacGowan, L. B. D. Silva, D. L. Matthews, J. H. Underwood, P. J. Batson, R. W. Lee, R. A. London, and S. Mrowka, 'Experimental and theoretical investigation of neonlike selenium x-ray laser spectral linewidths and their variation with amplification,' Phy. Rev. A 50, 1877-1898 (1994) https://doi.org/10.1103/PhysRevA.50.1877
  5. N. Hasegawa, T. Kawachi, T. Utsumi, A. Sasaki, M. Tanaka, M. Kado, K. Sukegawa, P. Lu, M. Kishimoto, R. Tai, K. Nagashima, M. Koike, H. Daido, and Y. Kato, 'High-precision measurement of the wavelength of a Ni-like silver x-ray laser,' Jpn. J. Appl. Phys. 43, 2519-2522 (2004) https://doi.org/10.1143/JJAP.43.2519
  6. R. Keenan, J. Dunn, V. N. Shlyaptsev, R. F. Smith, P. K. Patel, and D. F. Price, 'Efficient pumping schemes for high average brightness collisional x-ray lasers,' Proc. SPIE 5197, 213-220 (2003) https://doi.org/10.1117/12.504918
  7. B. M. Luther, Y. Wang, M. A. Larotonda, D. Alessi, M. Berrill, M. C. Marconi, J. J. Rocca, and V. N. Shlyaptsev, 'Saturated high-repetition-rate 18.9-nm tabletop laser in nickellike molybdenum,' Opt. Lett. 30, 165-167 (2005) https://doi.org/10.1364/OL.30.000165
  8. M. C. Hettrick, J. H. Underwood, P. J. Batson, and M. J. Eckart, 'Resolving power of 35,000 (5 m${\AA}$) in the extreme ultraviolet employing a grazing incidence spectrometer,' Appl. Opt. 27, 200-202 (1988) https://doi.org/10.1364/AO.27.000200
  9. T. Kawachi, M. Kado, M. Tanaka, N. Hasegawa, K. Nagashima, K. Sukegawa, P. Lu, K. Takahashi, S. Namba, M. Koike, A. Nagashima, and Y. Kato, 'Development of a pumping laser system for x-ray laser research,' Appl. Opt. 42, 2198-2205 (2003) https://doi.org/10.1364/AO.42.002198
  10. Y. Li, J. Nilsen, J. Dunn, and A. L. Osterheld, 'Wavelengths of the Ni-like 4d $^1S_04p ^1p_1$ x-ray laser line,' Phys. Rev. A 58, 2668-2671 (1998) https://doi.org/10.1103/PhysRevA.58.R2668
  11. K. Kindo, '100T magnet developed in Osaka,' Physica. B 294-295, 585-590 (2001) https://doi.org/10.1016/S0921-4526(00)00725-0
  12. G. J. Pert, 'The hybrid model and its application for studying free expansion,' J. Fluid Mech. 131, 401-426 (1983) https://doi.org/10.1017/S002211208300138X
  13. F. G. Tomasel, V. N. Shlyaptsev, and J. J. Rocca, 'Enhanced beam characteristics of a discharge-pumped soft-x-ray amplifier by an axial magnetic field,' Phys. Rev. A 54, 2474-2478 (1996) https://doi.org/10.1103/PhysRevA.54.2474

Cited by

  1. Amplification of a high-order harmonic pulse in an active medium of a plasma-based x-ray laser vol.80, pp.5, 2009, https://doi.org/10.1103/PhysRevA.80.053811
  2. Coherent Amplification of an Ultrashort Pulse in a High- and Swept-Gain Medium with Level Degeneracy vol.104, pp.5, 2010, https://doi.org/10.1103/PhysRevLett.104.053901
  3. Demonstration of a Circularly Polarized Plasma-Based Soft-X-Ray Laser vol.115, pp.8, 2015, https://doi.org/10.1103/PhysRevLett.115.083901
  4. Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser vol.3, pp.1, 2013, https://doi.org/10.1038/srep01170
  5. High-energy-density plasmas generation on GEKKO-LFEX laser facility for fast-ignition laser fusion studies and laboratory astrophysics vol.54, pp.12, 2012, https://doi.org/10.1088/0741-3335/54/12/124042