DOI QR코드

DOI QR Code

Laser Acceleration of Electron Beams to the GeV-class Energies in Gas Jets

  • Hafz, Nasr A.M. (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Jeong, Tae-Moon (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Lee, Seong-Ku (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Choi, Il-Woo (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Pae, Ki-Hong (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Kulagin, Victor V. (Sternberg Astronomical Institute, Moscow State University) ;
  • Sung, Jae-Hee (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Yu, Tae-Jun (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Cary, John R. (Department of Physics, University of Colorado) ;
  • Ko, Do-Kyeong (School of Photon Science and Technology and Advanced Photonics Research Institute Gwangju Institute of Science and Technology) ;
  • Lee, Jong-Min (Center for Femto-Atto Science and Technology (c-FAST), Advanced Photonics Research Institute Gwangju Institute of Science and Technology)
  • 투고 : 2009.12.16
  • 심사 : 2009.01.08
  • 발행 : 2009.03.25

초록

In a laser-plasma wakefield accelerator, the ponderomotive force of an ultrashort high intensity laser pulse excites a longitudinal wave or plasma bubble in a way similar to the excitation of a wake wave behind a boat as it propagates on the water surface. Electric fields inside the plasma bubble can be several orders of magnitude higher than those available in conventional RF-based particle accelerator facilities which are limited by material breakdown. Therefore, if an electron bunch is properly phase-locked with the bubble's acceleration field, it can gain relativistic energies within an extremely short distance. Here, in the bubble regime we show the generation of stable and reproducible sub GeV, and GeV-class electron beams. Supported by three-dimensional particle-in-cell simulations, our experimental results show the highest acceleration gradients produced so far. Simulations suggested that the plasma bubble elongation should be minimized in order to achieve higher electron beam energies.

키워드

참고문헌

  1. M. D. Perry and G. Mourou, 'Terawatt to petawatt subpicosecond lasers,' Science 264, 917-924 (1994) https://doi.org/10.1126/science.264.5161.917
  2. G. Mourou, T. Tajima, and S. V. Bulanov, 'Optics in the relativistic regime,' Rev. Mod. Phys. 78, 309-371 (2006) and references therein https://doi.org/10.1103/RevModPhys.78.309
  3. T. Tajima and J. Dawson, 'Laser electron accelerator,' Phys. Rev. Lett. 43, 267 (1979) https://doi.org/10.1103/PhysRevLett.43.267
  4. W. P. Leemans, B. Nagler, A. J. Gonsalves, Cs. Tith, K. Nakamura, C. G. R. Geddes, E. Esarey, C. B. Schroeder, and S. M. Hooker, 'GeV electron beams from a centimetrescale accelerator,' Nature Physics 2, 696-699 (2006) https://doi.org/10.1038/nphys418
  5. A. G. R. Thomas, Z. Najmudin, S. P. D. Mangles, C. D. Murphy, A. E. Dangor, C. Kamperidis, K. L. Lancaster, W. B. Mori, P. A. Norreys, W. Rozmus, and K. Krushelnick, 'Effect of laser-focusing conditions on propagation and monoenergetic electron production in laserwakefield accelerators,' Phys. Rev. Lett. 98, 095004 (2007) https://doi.org/10.1103/PhysRevLett.98.095004
  6. J. Faure, Y. Glinec, A. Pukhov, S. Kiselev, S. Gordienko, E. Lefebvre, J.-P. Rousseau, F. Burgy, and V. Malka, 'A laser-plasma accelerator producing monoenergetic electron beams,' Nature 431, 541-544 (2004) https://doi.org/10.1038/nature02963
  7. S. P. D. Mangles, C. D. Murphy, Z. Najmudin, A. G. R. Thomas, J. L. Collier, A. E. Dangor, E. J. Divall, P. S. Foster, J. G. Gallacher, C. J. Hooker, D. A. Jaroszynski, A. J. Langley, W. B. Mori, P. A. Norreys, F. S. Tsung, R. Viskup, B. R. Walton, and K. Krushelnick, 'Monoenergetic beams of relativistic electrons from intense laser-plasma interactions,' Nature 431, 535-538 (2004) https://doi.org/10.1038/nature02939
  8. G. R. Geddes, Cs. Toth, J. van Tilborg, E. Esarey, C. B. Schroeder, D. Bruhwiler, C. Nieter, J. Cary, and W. P. Leemans, 'High-quality electron beams from a laser wakefield accelerator using plasma-channel guiding,' Nature 431, 538-541 (2004) https://doi.org/10.1038/nature02900
  9. J. Faure, C. Rechatin, A. Norlin, A. Lifschitz, Y. Glinec, and V. Malka,'Controlled injection and acceleration of electrons in plasma wakefields by colliding laser pulses,' Nature 444, 737-739 (2006) https://doi.org/10.1038/nature05393
  10. N. Hafz I. W. Choi, J. H. Sung, H. T. Kim, K.-H. Hong, T. M. Jeong, T. J. Yu, V. Kulagin, H. Suk, Y.-C. Noh, D.-K. Ko, and J. Lee, 'Dependence of the electron beam parameters on the stability of laser propagation in a laser wakefield accelerator,' Appl. Phys. Lett. 90, 151501 (2007) https://doi.org/10.1063/1.2721119
  11. T. M. Jeong, I. W. Choi, N. Hafz, J. H. Sung, S. K. Lee, D.-K. Ko, and J. Lee, 'Wavefront correction and customization of focal spot of 100TW Ti:Sapphire laser system,' Jap. J. Appl. Phys. 46, 7724-7730 (2007) https://doi.org/10.1143/JJAP.46.7724
  12. T. M. Jeong, C. M. Kim, D.-K. Ko, and J. Lee, 'Reconstruction of wavefront aberration of 100–TW Ti: sapphire laser pulse using phase retrieval method,' J. Opt. Soc. Korea 12, 186-191 (2008) https://doi.org/10.3807/JOSK.2008.12.3.186
  13. J. H. Lee, Y. C. Lee, and H. J. Cheon, 'A circular bimorph deformable mirror for circular/annulus/square laser beam compensation,' J. Opt. Soc. Korea 10, 23-27 (2006) https://doi.org/10.3807/JOSK.2006.10.1.023
  14. T. Hosokai, K. Kinoshita, A. Zhidkov, K. Nakamura, T. Watanabe, T. Ueda, H. Kotaki, M. Kando, K. Nakajima, and M. Uesaka, 'Effect of a laser prepulse on a narrow-cone ejection of MeV electrons from a gas jet irradiated by an ultrashort laser pulse,' Phys. Rev. E 67, 036407 (2003) https://doi.org/10.1103/PhysRevE.67.036407
  15. M. Kando, S. Masuda, A. Zhidkov, A. Yamazaki, H. Kotaki, S. Kondo, T. Homma, S. Kanazawa, K. Nakajima, Y. Hayashi, M. Mori, H. Kiriyama, Y. Akahane, N. Inoue, H. Ueda, Y. Nakai, K. Tsuji, Y. Yamamoto, K. Yamakawa, J. Koga, T. Hosokai, M. Uesaka, and T. Tajima, 'Electron acceleration by a nonlinear wakefield generated by ultrashort (23-fs) high-peak-power laser pulses in plasma,' Phys. Rev. E 71, 015403 (R) (2005) https://doi.org/10.1103/PhysRevE.71.015403
  16. T. Hosokai, K. Kinoshita, A. Zhidkov, A. Maekawa, A. Yamazaki, and M. Uesaka, 'Effect of external static magnetic field on the emittance and total charge of electron beams generated by laser-wakefield acceleration,' Phys. Rev. Lett. 97, 075004 (2006) https://doi.org/10.1103/PhysRevLett.97.075004
  17. Y. Glinec, J. Faure, A. Guemnie-Tafo, V. Malka, H. Monard, J. P. Larbre, V. De Waele, J. L. Marignier, and M. Mostafavi, 'Absolute calibration for a broad range single shot electron spectrometer,' Rev. Sci. Inst. 77, 103301 (2006) https://doi.org/10.1063/1.2360988
  18. F. S. Tsung, W. Lu, M. Tzoufras, W. B. Mori, C. Joshi, J. M. Vieira, L. O. Silva, and R. A. Fonseca 'Simulation of monoenergetic electron generation via laser wakefield accelerators for 5–25 TW lasers,' Phys. Plasmas 13, 056708 (2006) https://doi.org/10.1063/1.2198535
  19. W. Lu, Tzoufras, C. Joshi, F. S. Tsung, W. B. Mori, J. Vieira, R. A. Fonseca, and L. O. Silva 'Generating multi-GeV electron bunches using single stage laser wakefield acceleration in a 3D nonlinear regime,' Phys. Rev. ST-AB 10, 061301 (2007) https://doi.org/10.1103/PhysRevSTAB.10.061301
  20. M. S. Hur, D. Nandan Gupta, and H. Suk, 'Enhanced electron trapping by a static longitudinal magnetic field in laser wakefield acceleration,' Phys. Lett. A 372, 2684-2687 (2008) https://doi.org/10.1016/j.physleta.2007.12.045
  21. D. Umstadter, J.-K. Kim, and E. Dodd, 'Laser injection of ultrashort electron pulses into wakefield plasma waves,' Phys. Rev. Lett. 76, 2073 (1996) https://doi.org/10.1103/PhysRevLett.76.2073
  22. E. Esarey, R. F. Hubbard, W. P. Leemans, A. Ting, and P. Sprangle 'Electron injection into plasma wake fields by colliding laser pulses,' Phys. Rev. Lett. 79, 2682-2685 (1997) https://doi.org/10.1103/PhysRevLett.79.2682
  23. S. Gordienko and A. Pukhov, 'Scaling for ultrarelativistic laser plasmas and quasimonoenergetic electrons,' Phys. Plasmas 12, 043109 (2005) https://doi.org/10.1063/1.1884126
  24. C. Nieter and J. R. Cary, 'VORPAL : a versatile plasma simulation code,' J. Compu. Phys. 196, 448-474 (2004) https://doi.org/10.1016/j.jcp.2003.11.004
  25. A. Pukhov and J. ter. Vehn, 'Laser wake field acceleration: the highly non-linear broken-wave regime,' Appl. Phys. B. Lasers Opt. 74, 355-361 (2002) https://doi.org/10.1007/s003400200795
  26. N. A. M. Hafz, T. M. Jeong, I. W. Choi, S. K. Lee, K. H. Pae, V. V. Kulagin, J. H. Sung, T. J. Yu, K.-H. Hong, T. Hosokai, J. R. Cary, D.-K. Ko, and J. Lee 'Stable generation of GeV-class electron beams from self-guided laser-plasma channels', Nature Photonics 2, 571-577 (2008) https://doi.org/10.1038/nphoton.2008.155