DOI QR코드

DOI QR Code

평판형 유도결합 플라즈마 장치의 SiH4/H2 방전에 대한 공간 평균 전산모사

A Global Simulation of SiH4/H2 Discharge in a Planar-type Inductively Coupled Plasma Source

  • Lee, Won-Gi (Department of electrical engineering, Chungbuk National University) ;
  • Kwon, Deuk-Chul (Department of electrical engineering, Chungbuk National University) ;
  • Yoon, Nam-Sik (Department of electrical engineering, Chungbuk National University)
  • 발행 : 2009.11.30

초록

평판형 유도결합 플라즈마 장치의 $SiH_4/H_2$ 방전에 대한 공간 평균 전산모사가 이루어졌다. $SiH_4/H_2$ 플라즈마 방전에서 발생되는 전자, 양이온, 음이온, 중성종, 그리고 라디칼들에 대한 공간 평균된 유체 방정식을 기반으로 하고 있으며, 비정상 표피효과(Anomalous skin effect)를 고려한 비충돌 전자가열 모델을 적용하여 흡수되는 파워량을 결정하였다. $SiH_4$$H_2$의 가스 주입비율, 파워, 그리고 압력을 변화시키며 각각에 대한 하전입자, 중성종 및 라디칼들의 밀도 변화와 전자온도 의존성을 조사하였다.

A global simulation of $SiH_4/H_2$ discharge is conducted in a planar-type inductively coupled plasma (ICP) discharge. We numerically solve a set of spatially averaged fluid equations for electrons, positive ions, negative ions, neutrals, and radicals. Absorbed power by electrons is determined by an analytic electron heating theory including the anomalous skin effect. Also, we investigate functional dependence of various discharge quantities such as the densities of various species and the temperature of electron on external controllable parameters such as ratio between $SiH_4$ and $H_2$, power and pressure.

키워드

참고문헌

  1. D. C. Kwon, N. S. Yoon, J. H. Han, and J. W. Shon, Current Appl. phys. 9(2), pp. 546-550 (2009) https://doi.org/10.1016/j.cap.2008.03.022
  2. Hideshi Nomura, Kelichi Akimoto, Akihiro Kono, and Toshio Goto, J. Phys. D: Appl. Phys. 28 (1995)
  3. N. S. Yoon, S. M. Hwang, and D. I. Choi, Phys. Rev. E, 55, 7536 (1997) https://doi.org/10.1103/PhysRevE.55.7536
  4. 정봉삼, 윤남식, 한국진공학회지, 제 17권 5호, pp. 419-425 (2008) https://doi.org/10.5757/JKVS.2008.17.5.419
  5. N. S. Yoon, S. S. Kim, C. S. Chang, and Duk-In Choi, J. Korean Phys Soc. 28, 2, pp. 172(1995)
  6. S. S. Kim, S. Hamaguchi, N. S. Yoon, C. S. Chang, Y. D. Lee, and S. H. Ku, Physics of Plasmas, 8, 1384(2001) https://doi.org/10.1063/1.1350671
  7. E. Meeks, R. S. Larson, P. Ho, S. M. Han, E. Edelberg, and E. S. Aydil, J. Vac. Sci. Technol. A 16(2), 544, (1998) https://doi.org/10.1116/1.581096
  8. M. Kushner, J. Appl. Phys. 63(8), 2532, (1988) https://doi.org/10.1063/1.340989
  9. K. D. Bleecker, D. Herrebout, A. Bogaerts, G. Gijbels, and P. Dscamps, J. Phys. D: Appl. Phys. 36, 1826, (2003) https://doi.org/10.1088/0022-3727/36/15/313
  10. G. J. Niehuis, W. J. Goedheer, E. A. G. Hans, W. G. J. H. M. van Sark, and J. Bezemer, J. Appl. Phys. 82(5), 2060 (1997) https://doi.org/10.1063/1.366016
  11. J. Perrin, O. Leroy, and M. C. Bordage, Contrib. Plasma Phys. 36, 3 (1996) https://doi.org/10.1002/ctpp.2150360102
  12. J. L. Giuliani et al., IEEE Trans. Plasma Sci. 27(5), 1317 (1999) https://doi.org/10.1109/27.799808
  13. 배상현, 권득철, 윤남식, 한국진공학회지, 제 17권 5호, pp. 426-434 (2008) https://doi.org/10.5757/JKVS.2008.17.5.426

피인용 문헌

  1. Numerical Investigation of Ion and Radical Density Dependence on Electron Density and Temperature in Etching Gas Discharges vol.20, pp.6, 2011, https://doi.org/10.5757/JKVS.2011.20.6.422
  2. Characterization of Gas Distribution Effect in Inductively Coupled Plasma System vol.46, pp.3, 2013, https://doi.org/10.5695/JKISE.2013.46.3.133
  3. Numerical modeling of SiH4 discharge for Si thin film deposition for thin film transistor and solar cells vol.519, pp.20, 2011, https://doi.org/10.1016/j.tsf.2011.04.062
  4. Global Modeling of Atmospheric Pressure Oxygen Plasmas vol.20, pp.4, 2011, https://doi.org/10.5757/JKVS.2011.20.4.258
  5. Modeling of silicon nanoparticle formation in inductively coupled plasma using a modified collision frequency function vol.28, pp.11, 2014, https://doi.org/10.1007/s12206-014-1036-z