DOI QR코드

DOI QR Code

기체유입이 되는 진공챔버 안의 불균등한 압력분포 연구

A Study of Non-uniform Pressure Distribution in Vacuum Chamber during Dynamic Gas Flow

  • 와킬 칸 (한국표준과학연구원 진공센터) ;
  • 홍기성 (한국표준과학연구원 진공센터) ;
  • 홍승수 (한국표준과학연구원 진공센터)
  • 발행 : 2009.11.30

초록

진공챔버는 진공게이지 교정, 산업에서의 재료처리 등 여러 가지 다양한 용도에 맞게 적용이 가능하다. 이 진공챔버 내부에서 가스가 유입되는 과정에서의 진공도는 일정하게 유지하기가 힘들다. 산업체 응용에서뿐만 아니라 연구과정에서도 진공챔버 내부에 가스가 유입되는 동안의 내부압력분포와 최대도달 평형압력을 아는 것이 매우 중요하다. 이러한 진공챔버 내부의 압력 불균형을 감소시키기 위해서 가스 주입구 부분에 baffle을 이용하는 방법이 있다. 현재 지속적인 기체흐름이 있는 진공챔버 내부의 기체흐름의 작용에 관해 0.1 Pa~133 Pa 영역에서 불규칙한 압력을 최소화하기 위한 baffle plate의 효과에 대해 연구하였다. 최대편차는 가스 주입구 부분에서 나타나는 압력으로 baffle plate가 전환흐름영역에서 큰 영향을 미치는 것으로 나타났다.

Vacuum chambers have wide application for a variety of purposes such as material processing, vacuum gauge calibration, etc. As the dynamic pressure generated in such chamber is non-uniform, in many industrial as well as research processes, it is vital to know the non-uniform gas distribution with associated gas flow regimes and the ways of minimizing these pressure non-uniformities. In the present work, the behavior of gas flow in a vacuum chamber, during continuous gas flow, is described in the pressure range 0.1-133 Pa and the effect of baffle plate in minimizing the pressure non-uniformities is investigated. It was observed that maximum deviations in the pressure occur near the gas inlet point and that the effect of baffle plate in minimizing the pressure non-uniformities is more obvious in the transitional flow regime.

키워드

참고문헌

  1. S. H. Lee, H. J. Seo, and S. Y. Yoo, Space Business and Applications of Vacuum Technology, J. Kor. Vac. Soc., Vol. 17, No. 4, 270 (2008) https://doi.org/10.5757/JKVS.2008.17.4.270
  2. F. Stanek, J. Tesar, L. Peksa, T. Gronych, and P. Repa, "Extending the range of pressure generated dynamically up to 100 Pa in a calibration chamber pumped by a turbomolecular pump", Vacuum, vol. 67, 307 (2002). https://doi.org/10.1016/S0042-207X(02)00213-0
  3. P. Repa. Z. Cespiro, L. Peksa, T. Gronych, and J. Tesar, "Measurement of pressure differences between various positions in a vacuum chamber where pressure is generated dynamically", Metrologia, Vol. 36, 551 (1999) https://doi.org/10.1088/0026-1394/36/6/13
  4. S. B. Nesterov, Yu. K. Vassiliev, and A. P. Kryukov, "Influence of the vacuum chamber shape on the non-uniformity of gas distribution, Vacuum, Vol. 53, 193 (1999) https://doi.org/10.1016/S0042-207X(98)00361-3
  5. B.C. Moore, Causes and consequences of nonuniform gas distributions in vacuum system, J. Vac. Sci. Technol. Vol. 6, No. 1, 246 (1969) https://doi.org/10.1116/1.1492672
  6. J. K. N. Sharma and D. R. Sharma, Measurement of the effective pressure distribution in axial direction in a dynamic vacuum system, J. Vac. Sci. Technol. (A) 6 (4), 2508 (1988) https://doi.org/10.1116/1.575537
  7. G. Horikoshi, T. Kuroda, and Y Oka, "Pressure distribution in a large vacuum chamber with a large gas load and a large pumping speed", Vacuum, Vol. 44 (5-7), 617 (1993) https://doi.org/10.1016/0042-207X(93)90110-V
  8. L. Peksa, T. Gronych, P. Repa, and J. Tesar, "Measurement of the pressure differences in a large chamber where the pressure is generated dynamically", Vacuum, Vol. 67, 333 (2002) https://doi.org/10.1016/S0042-207X(02)00222-1
  9. P. J. Szwemin, N. Niewinski, and K. Szymanski, "Conductance of orifeces in the spherical and cylindrical chambers of calibration systems", Vacuum, Vol. 46 (8-10), 875 (1995) https://doi.org/10.1016/0042-207X(95)00061-5
  10. A. Berman, Total Pressure Measurement in Vacuum Technology (Academic Press, Inc. Orlando, Florida, 1985) p. 23
  11. O. Boulon and R. Mathes, Direct Monte Carlo method for molecular and transitional flow regimes in vacuum components with static and moving surfaces, J. Vac. Sci. Technol. A 17 (4), 2080 (1999) https://doi.org/10.1116/1.581730
  12. Karl Jousten, Handbook of Vacuum Technology (Wiley-Vch Verlag GmbH & Co. KGaA, 2008) pp. 80-81
  13. W. Jitschin and G. Reich, "Molecular velocity distribution at large Knudsen numbers", J. Vac. Sci. Technol. A, Vol. 9 (5), pp. 2752 (1991) https://doi.org/10.1116/1.577194
  14. Armand Berman, Vacuum Engineering Calculations, Formulas, and Solved Exercises (Academic Press, Inc, 1992) p. 46
  15. M. K. No, T. K. Whang, and J. W. Park, Screwtype Dry Vacuum Pump Technology and Application in Semiconductor Process, J. Kor. Vac. Soc. Vol. 17, No. 4, 292 (2008). https://doi.org/10.5757/JKVS.2008.17.4.292
  16. Richard W. Hyland and Charles R. Tilford, Zero stability and calibration results for a group of capacitance diaphragm gauges, J. Vac. Sci. Technol. A 3(3), 1731 (1985) https://doi.org/10.1116/1.573009
  17. Shin-Ichi Nishizawa and Masahiro Hirata, "DSMC analysis of thermal transpiration of capacitance diaphragm gauge", Vacuum, Vol. 67, 301 (2002) https://doi.org/10.1016/S0042-207X(02)00212-9
  18. J. M. Hidalgo and J. L. de Segovia, "Uncertainties in calibration using capacitance diaphragm gauges as reference standard", Vacuum, Vol. 82, 1503 (2008) https://doi.org/10.1016/j.vacuum.2008.03.092
  19. S. S. Hong, Y. H. Shin, and K. H. J. Chung, Bilateral comparison of medium vacuum standards between PTB and KRISS, Journal of the Korean Physical Society, Vol. 44, No. 6, 1364 (2004)
  20. S. S. Hong, Y. H. Shin, and K. H. J. Chung, Measurement uncertainties for vacuum standards at Korea Research Institute of Standards and Science, J. Vac. Sci. Technol. A 24, 1831 (2006) https://doi.org/10.1116/1.2244534
  21. S. S. Hong, Y. H. Shin, and K. H. J. Chung, J. Kor. Vac. Soc. 5, 181 (1996)
  22. P. L. M. Heydemann, C. R. Tilford, and R. W. Hyland, J. Vac. Sci. Technol. A 14 (1), 597 (1977) https://doi.org/10.1116/1.569158