Abstract
This paper proposes an exploration strategy to efficiently find a specific place in large unknown environments with wall-following based path planning. Many exploration methods proposed so far showed good performance but they focused only on efficient planning for modeling unknown environments. Therefore, to successfully accomplish the room finding task, two additional requirements should be considered. First, suitable path-planning is needed to recognize the room number. Most conventional exploration schemes used the gradient method to extract the optimal path. In these schemes, the paths are extracted in the middle of the free space which is usually far from the wall. If the robot follows such a path, it is not likely to recognize the room number written on the wall because room numbers are usually too small to be recognized by camera image from a distance. Second, the behavior which re-explores the explored area is needed. Even though the robot completes exploration, it is possible that some rooms are not registered in the constructed map for some reasons such as poor recognition performance, occlusion by a human and so on. With this scheme, the robot does not have to visit and model the whole environment. This proposed method is very simple but it guarantees that the robot can find a specific room in most cases. The proposed exploration strategy was verified by various experiments.