References
- R Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, and L. Martinez-Salamero, 'MPPT of photovoltaic systems using extremum-seeking control,' IEEE Trans. Aerospace & Electronic Systems, vol. 42, no. 1, pp. 249-258, 2006 https://doi.org/10.1109/TAES.2006.1603420
- C. Larbes, S. M. Ait-Cheikh, T. Obeidi, and A. Zerguerras, 'Genetic algorithms optimized fuzzy logic control for the maximum power tracking in photovoltaic system,' Renewable Energy, vol. 34, pp. 2093-2100, 2009 https://doi.org/10.1016/j.renene.2009.01.006
- I.-S. Kim, 'Sliding mode controller for the single-phase grid-connected photovoltaic system,' Applied Energy, vol. 83, pp. 1101-1115, 2006 https://doi.org/10.1016/j.apenergy.2005.11.004
- N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, 'Optimization of perturb and observe maximum power point tracking method,' IEEE Trans. on Power Electronics, vol. 20, no. 4, pp. 963-973, 2005 https://doi.org/10.1109/TPEL.2005.850975
- A. Sozen, E. Arcakioglu, M. Ozalp, and N. Caglar, 'Forecasting based on neural network approach of solar potential in Turkey,' Renewable Energy, vol. 30, pp. 1075-1090, 2005 https://doi.org/10.1016/j.renene.2004.09.020
- T. Hove, 'A method for predicting long-term average performance of photovoltaic systems,' Renewable Energy, vol. 21, pp. 207-229, 2000 https://doi.org/10.1016/S0960-1481(99)00131-7
- G. Vijayakumar, M. Kummert, S. A. Klein, and W. A. Beckman, 'Analysis of short-term solar radiation data,' Solar Energy, vol. 79, pp. 495-504, 2005 https://doi.org/10.1016/j.solener.2004.12.005
- A. Mellit, M. Benghanem, A. H. Arab, and A. Guessourn, 'A simplified model for generating sequence of global solar radiation data for isolated sites: Using artificial neural network and a library of Markov transition matrices approach,' Solar Energy, vol. 79, pp. 469-482, 2005 https://doi.org/10.1016/j.solener.2004.12.006
- M. Chaabene and M. B. Ammar, 'Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems,' Renewable Energy, vol. 33, pp. 1435-1443, 2008 https://doi.org/10.1016/j.renene.2007.10.004
- A. Mellit, M. Benghanem, and S. A. Kalogirou, 'Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure,' Renewable Energy, vol. 32, pp. 285-313, 2007 https://doi.org/10.1016/j.renene.2006.01.002
- E. Karatepe, M. Boztepe, and M. Colak, 'Neural network based solar cell model,' Energy Conversion & Management, vol. 47, pp. 1159-1178, 2006. https://doi.org/10.1016/j.enconman.2005.07.007
- M. Abdulhadi, A. M. Al-ibrahim, and G. S. Virk, 'Neuro-fuzzy-based solar cell model,' IEEE Trans. on Energy Conversion, vol. 19, no. 3, pp. 619-624, 2004 https://doi.org/10.1109/TEC.2004.827033
- E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe, and D. Goitia, 'Intellignet PV module for grid-connected PV systems,' IEEE Trans. on Industrial Electronics, vol. 53, no. 4, pp. 1066-1073, 2006 https://doi.org/10.1109/TIE.2006.878327
- O. Beker, 'Analysis of reset control systems,' Ph.D. Dissertation, Univ. of Massachusetts Amherst, 2001
- R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001
-
조현철, 심광열, 이권순, '네트위크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습 제어시스템,' 제어
${\cdot}$ 로봇${\cdot}$ 시스템 학회 논문지, vol. 15, no. 9, pp. 929-938, 2009 - S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, New Jersey, 1999
Cited by
- Development and Evaluation of Multi-string Power Balancing System for Solar Streetlight vol.25, pp.12, 2012, https://doi.org/10.4313/JKEM.2012.25.12.1021