DOI QR코드

DOI QR Code

Nonlinear Adaptive Control and Stability Analysis for Improving Transient Response of Photovoltaic Converter Systems

태양광 컨버터 시스템의 과도응답 개선을 위한 비선형 적응제어 및 안정성 해석

  • 조현철 (울산과학대학 전기전자학부) ;
  • 유수복 (울산과학대학 전기전자학부) ;
  • 이권순 (동아대학교 전기공학과)
  • Published : 2009.12.01

Abstract

In photovoltaic(PV) generator systems, DC-DC converters are significantly considered for control system performance in power quality point of view. This paper presents a novel adaptive control method for DC-DC converters applied in PV generator systems. First, we derive a state-space average model of the converter system and then propose a reset control methodology to enhance transient response performance for time-varying PV systems. For estimating parameters of a reset control, a gradient descent optimization is utilized and an adjustment rule of them are derived respectively. An objective of the optimization is that characteristic equation of an augmented system model which is formed with an converter system model and an reset control is to trace a predefined polynomial given as a reference characteristic model. Next, we accomplish stability analysis by means of a well-known Lyapunov theory for nonlinear converter systems including time-varying voltage excitation from a PV generator. Numerical simulation demonstrates reliability of our control methodology and its superiority by comparison to a traditional control strategy.

Keywords

References

  1. R Leyva, C. Alonso, I. Queinnec, A. Cid-Pastor, D. Lagrange, and L. Martinez-Salamero, 'MPPT of photovoltaic systems using extremum-seeking control,' IEEE Trans. Aerospace & Electronic Systems, vol. 42, no. 1, pp. 249-258, 2006 https://doi.org/10.1109/TAES.2006.1603420
  2. C. Larbes, S. M. Ait-Cheikh, T. Obeidi, and A. Zerguerras, 'Genetic algorithms optimized fuzzy logic control for the maximum power tracking in photovoltaic system,' Renewable Energy, vol. 34, pp. 2093-2100, 2009 https://doi.org/10.1016/j.renene.2009.01.006
  3. I.-S. Kim, 'Sliding mode controller for the single-phase grid-connected photovoltaic system,' Applied Energy, vol. 83, pp. 1101-1115, 2006 https://doi.org/10.1016/j.apenergy.2005.11.004
  4. N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, 'Optimization of perturb and observe maximum power point tracking method,' IEEE Trans. on Power Electronics, vol. 20, no. 4, pp. 963-973, 2005 https://doi.org/10.1109/TPEL.2005.850975
  5. A. Sozen, E. Arcakioglu, M. Ozalp, and N. Caglar, 'Forecasting based on neural network approach of solar potential in Turkey,' Renewable Energy, vol. 30, pp. 1075-1090, 2005 https://doi.org/10.1016/j.renene.2004.09.020
  6. T. Hove, 'A method for predicting long-term average performance of photovoltaic systems,' Renewable Energy, vol. 21, pp. 207-229, 2000 https://doi.org/10.1016/S0960-1481(99)00131-7
  7. G. Vijayakumar, M. Kummert, S. A. Klein, and W. A. Beckman, 'Analysis of short-term solar radiation data,' Solar Energy, vol. 79, pp. 495-504, 2005 https://doi.org/10.1016/j.solener.2004.12.005
  8. A. Mellit, M. Benghanem, A. H. Arab, and A. Guessourn, 'A simplified model for generating sequence of global solar radiation data for isolated sites: Using artificial neural network and a library of Markov transition matrices approach,' Solar Energy, vol. 79, pp. 469-482, 2005 https://doi.org/10.1016/j.solener.2004.12.006
  9. M. Chaabene and M. B. Ammar, 'Neuro-fuzzy dynamic model with Kalman filter to forecast irradiance and temperature for solar energy systems,' Renewable Energy, vol. 33, pp. 1435-1443, 2008 https://doi.org/10.1016/j.renene.2007.10.004
  10. A. Mellit, M. Benghanem, and S. A. Kalogirou, 'Modeling and simulation of a stand-alone photovoltaic system using an adaptive artificial neural network: Proposition for a new sizing procedure,' Renewable Energy, vol. 32, pp. 285-313, 2007 https://doi.org/10.1016/j.renene.2006.01.002
  11. E. Karatepe, M. Boztepe, and M. Colak, 'Neural network based solar cell model,' Energy Conversion & Management, vol. 47, pp. 1159-1178, 2006. https://doi.org/10.1016/j.enconman.2005.07.007
  12. M. Abdulhadi, A. M. Al-ibrahim, and G. S. Virk, 'Neuro-fuzzy-based solar cell model,' IEEE Trans. on Energy Conversion, vol. 19, no. 3, pp. 619-624, 2004 https://doi.org/10.1109/TEC.2004.827033
  13. E. Roman, R. Alonso, P. Ibanez, S. Elorduizapatarietxe, and D. Goitia, 'Intellignet PV module for grid-connected PV systems,' IEEE Trans. on Industrial Electronics, vol. 53, no. 4, pp. 1066-1073, 2006 https://doi.org/10.1109/TIE.2006.878327
  14. O. Beker, 'Analysis of reset control systems,' Ph.D. Dissertation, Univ. of Massachusetts Amherst, 2001
  15. R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Kluwer Academic Publishers, 2001
  16. 조현철, 심광열, 이권순, '네트위크 기반 시간지연 시스템을 위한 리세트 제어 및 확률론적 예측기법을 이용한 온라인 학습 제어시스템,' 제어${\cdot}$로봇${\cdot}$시스템 학회 논문지, vol. 15, no. 9, pp. 929-938, 2009
  17. S. Haykin, Neural Networks: A Comprehensive Foundation, Prentice Hall, Upper Saddle River, New Jersey, 1999

Cited by

  1. Development and Evaluation of Multi-string Power Balancing System for Solar Streetlight vol.25, pp.12, 2012, https://doi.org/10.4313/JKEM.2012.25.12.1021