Effect of Cation and Ionic Strength on Dispersion and Coagulation of Hwangto and Clay Minerals

양이온의 종류와 농도에 따른 황토와 점토광물의 분산과 응집

  • Published : 2009.09.30

Abstract

The objective of this research was to find out the physical properties, such as dispersion and coagulation, of soil minerals depending on the types and concentrations of the cations in aqueous solution. Hwangto samples were obtained from 90 to 130 cm from surface at Jangdong-ri, Donggang-Myon, Naju, Chonnam Province. The clay fraction (< $2\;{\mu}m$) was separated by sedimentation method from the bulk soils. Both Hwangto and clay fractions, and the same samples after removal of amorphous and crystalline iron oxides were used in this experiment. The effect of 4 cations ($Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$) and their concentrations on settling speed and basal spacing of the minerals were observed to examine the physical properties of the soil and clay minerals. Hwangto mainly consisted of quartz, and the clay fractions consisted of kaolinite, illite, and vermiculite. The bulk soils contained 16.3 mg/kg of amorphous iron oxides and 436 mg/kg of crystalline iron oxides. Clay fractions were dispersed better than bulk soils due to their smaller particle size than that of the bulk samples in the aqueous solution. The bulk and clay samples were dispersed better when iron oxides were removed because of coating of minerals by the iron oxides. Clay minerals were settled faster as the charge and the concentration of cations added increased. The d-spacing of kaolinite and illite did not change when 4 types of cations were added. The d-spacing of vermiculite showed $14.04\;{\AA}$ when divalent cations were added while that of vermiculite showed $13.9\;{\AA}$ when monovalent cations were added. It may be attributed to the hydration radii of cations. This study indicated that both coating of iron oxides on minerals and types and concentrations of cations affect dispersion of minerals in solution and d-spacing of expanding clay minerals such as vermiculite.

본 연구는 황토와 황토에서 분리한 점토(clay fraction)를 이용하여 수용액 내 양이온의 종류와 농도에 따른 점토광물의 분산과 응집의 변화를 알아보고자 하였다. 본 연구를 위하여 사용한 황토는 전남 나주시 동강면 장동리 황토로 지표면으로 부터 90~130 cm 깊이에서 채취하였다. 황토와 황토에서 분리한 점토(< $2\;{\mu}m$) 그리고 이들 시료로부터 결정질 철과 비결정질 철을 제거한 황토와 점토시료를 이용하여 실험을 실시하였다. 이온의 종류와 농도에 따른 점토광물의 저면간격과 물리적 성질의 변화를 알아보기 위하여 4가지 양이온($Na^+$, $K^+$, $Mg^{2+}$, $Ca^{2+}$)과 이들 이온의 농도(0.001 M~1 M)를 변화시켰을 때 광물의 침강속도와 점토광물의 저면간격의 변화를 연구하였다. 장동리 황토의 주 구성광물은 석영이며, 황토로부터 분리한 점토는 카올리나이트, 일라이트, 버미큘라이트로 이루어져 있다. 장동리 황토의 비결정질 철과 결정질 철의 함량은 각각 16.3 mg/kg과 436 mg/kg으로 주로 결정질 철로 이루어져 있다. 이온농도가 다른 4가지 이온을 추가한 수용액에서 구성 입자의 크기가 작은 점토가 황토에 비하여 분산이 더 잘되었다. 황토광물을 코팅하고 있는 결정질 철과 비결정질 철을 제거하기 전과 제거한 후 광물의 분산실험 결과에서 철을 제거한 시료가 분산이 더 잘 일어났으며 이는 코팅된 철 산화물이 광물입자들의 분산을 방해하는 것으로 사료된다. 수용액 중 이온의 종류와 농도가 광물의 분산에 미치는 영향 실험결과에 따르면 첨가한 이온의 농도가 클수록 그리고 양이온 전하량이 클수록 침강속도가 빨랐다. X-선 회절 분석 결과에 따르면 카올리나이트와 일라이트는 양이온의 종류와 농도에 따른 저면 간격의 변화가 없었다. 하지만 버미큘라이트는 일반적으로 +2가 양이온을 첨가한 경우 저면간격이 $14.04\;{\AA}$으로 +1가 양이온의 $13.9\;{\AA}$보다 크게 나타났다. 이는 +2가 양이온들의 수화반경이 +1가 양이온보다 크기 때문으로 사료된다. 따라서 광물에 코팅된 철과 수용에 내의 이온의 종류와 농도가 광물의 분산 및 버미큘라이트와 같은 팽창성 점토광물의 저면간격에 영향을 줄 수 있음을 시사한다.

Keywords

References

  1. 문희수 (1996) 점토광물학, 민음사, 서울 649 p
  2. 이봉호, 정기영 (2008) 북부 배수유역의 토양 점토광물분포, 한국광물학회지, 21, 349-354
  3. Dontsova, K.M., Nortona, L.D., Johnston, C.T., and Bighamd J.M. (2004) lnfluence of exchangeable cations on water adsorption by soil clays, Soil Sci. Soc. Am. J., 68, 1218-1227 https://doi.org/10.2136/sssaj2004.1218
  4. Dontsova, K.M., and Norton. L.D. (2002) Clay dispersion, infiltration, and erosion as influenced by exchangeable Ca and Mg. Soil Sci., 167, 184-193 https://doi.org/10.1097/00010694-200203000-00003
  5. Drever, J.I. (1973) The preparation of oriented c1ay mineral specimens for X-ray diffraction analysis by a filter-membrane peel technique. Am. Mineral. 58, 553-554
  6. Essington, M.E. (2004) Soil and water chemistry-an integrative approach. CRC Press. 534 p
  7. Gee, G.W. and Bauder, J.W. (1986) Particle size analysis. p. 383-411. ln A.L. Klute et al. (ed) Method of soil analysis. Part 1. 2nd ed. Agron. Monogr. 9. ASA and SSSA. Madison, WI. USA
  8. Harward, M.E., Theisen, A.A., and Evans, D.D. (1962) Effect of iron removal and dispersion methods on clay mineral identification by X-ray diffraction. Soil Sci. Soc. Am. J., 26, 535-541 https://doi.org/10.2136/sssaj1962.03615995002600060008x
  9. Heil, D. and Sposito. G. (1993) Organic matter role in illitic soil colloids flocculation: I. Counter ions and pH. Soil Sci. Soc. Am. J., 57, 1241-1246 https://doi.org/10.2136/sssaj1993.03615995005700050014x
  10. Jackson, M.L. (1969) Soil chemical analysis: advanced source. University of Wisconsin, Madison, USA, 895 p
  11. Keren, R. (1991) Specific effect of magnesium on soil erosion and water infiltration. Soil Sci. Soc. Am. J., 55, 783-787 https://doi.org/10.2136/sssaj1991.03615995005500030025x
  12. Kilmer, J. and Alexander, L.T. (1945) Method of making mechanical analysis of soils. Soil Sci., 68, 15-24
  13. McKeague, J.A. and Day, J.H. (1966) Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can J. Soil Sci., 46, 13-22 https://doi.org/10.4141/cjss66-003
  14. Moon, J.W., Roh, Y., Phelps T.J., Phillips D.H., Watson D.B., Kim, Y.J., and Brooks S.C. (2006) Physicochemical and mineralogical characterization of soil- saprolite corεs from a fie1d research site, Tennessee. J. Environ. Qual., 35, 1730-1741
  15. Moore, D.M. and Reyno1ds, R.C., Jr. (1989) X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press, Oxford. 332p
  16. Phillips, D.H., Watson, D.B., Roh, Y., Mehlhom, T.L., Moon, J.W., and Jardine, P.M. (2006) Distribution of uranium contamination in weathered fractured saprolite/shale and ground water. J. Environ. Qual., 35, 1715-1730 https://doi.org/10.2134/jeq2005.0124
  17. Phillips, D.H., Watson, D.B., and Roh, Y. (2007) Uranium deposition in a weathered fractured saprolite/shale. Environ. Sci. & Technol., 41, 7653-7660 https://doi.org/10.1021/es070819d
  18. Rengasamy, P., Greene, R.S.B., and Ford, G.W. (1986) Intluence of magnesium on aggregate stability in sodic red-brown soils. Aust. J. Soil Sci., 24, 229-237 https://doi.org/10.1071/SR9860229
  19. Schwertmann, U. (1964) Differenzierung der Eisenoxide des Bodens durch Extraktion mit Ammoni-umoxalat-Losung, Z. Ptlanzenemahr. Dung. Bodenk 105, 194-202 https://doi.org/10.1002/jpln.3591050303
  20. Schwertmann, U. and Taylor, R.M. (1989) Iron oxides p. 379-438. In J.B. Dixon and S.B. Weed (ed) Minerals in soil environments. Soil Science Society of America Book Series. SSSA. Madison, WI. USA
  21. Sparks, D.L. (2003) Environmental Soil Chemistry. Academic Press, San Diegeo, CA. 352pp
  22. Sposito, G. (1989) The Chemistry of Soils. Oxford University Press, 277p
  23. Vincente, M.A. Razzaghe, M., and Robert, M. (1977) Formation of aluminum hydroxy vermiculite (intergrade) and smectite from mica under acidic conditions. Clay Miner., 12, 101-112 https://doi.org/10.1180/claymin.1977.012.02.01
  24. Zhang, X.C. and Norton, L.D. (2002) Effect of exchangeable Mg on saturated hydraulic conductivity, disaggregation and clay dispersion of disturbed soils. J. Hydrol., 260, 194-205 https://doi.org/10.1016/S0022-1694(01)00612-6