금속급 실리콘용 고순도 규사 제조를 위한 물리적 정제 특성

Preparation of High-grade Silica Sand for Metallurgical-grade Si Using a Physical Beneficiation

  • 양영철 (한국지질자원연구원 광물자원연구본부) ;
  • 정수복 (한국지질자원연구원 광물자원연구본부) ;
  • 채영배 (한국지질자원연구원 광물자원연구본부) ;
  • 김성 (한국지질자원연구원 광물자원연구본부)
  • Yang, Young-Cheol (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Jeong, Soo-Bok (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Chae, Young-Bae (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources) ;
  • Kim, Seong (Mineral Resources Research Division, Korea Institute of Geoscience & Mineral Resources)
  • 발행 : 2009.09.30

초록

고순도 금속급 실리콘 제조에서는 원료가 되는 실리카 광물의 $SiO_2$ 품위가 매우 중요한 요소이다. 베트남 규사광에 대한 광물학적 분석결과를 토대로, 석영과 불순광물의 광물학적 특성차이를 이용하는 분급, 비중 및 자력선별을 포함하는 물리적 종합정제공정을 구성하여 적용시켰다. $SiO_2$ 품위 99.8 wt% 이상의 고순도 규사 정광을 93 wt% 이상 회수하였다. 이러한 고순도 규사 정광은 금속급 실리콘의 순도 규격에 적합하였다.

It is very important to raise the purity of silica for manufacturing metallurgical-grade silicon because the purification of silicon in the smelting process is very difficult. In present study, the silica sand which is obtained from Vietnam was mineralogically analyzed. Based on the results, a novel process to separate impurities from the silica sand was developed, which consisted of classification, specific gravity and magnetic separation steps. Using the developed process, high-grade silica sand concentrate containing over 99.8 wt% $SiO_2$ was prepared, being suitable for manufacturing the metallurgical-grade silicon.

키워드

참고문헌

  1. 김희영 (2008) '태양전지용 폴리실리콘 제조' Korean Chem. Eng. Res., 46(1), 37-49
  2. Barthey, B.R. and Gretella, M.C. (1982) 'Solar Grade Silicon', J. Mater. Sci., 17, 3077-3096 https://doi.org/10.1007/BF01203469
  3. Chu, T.L., Van der Leeden, G.A., and Yoo, H.I. (1978) 'Purification and Characterization of Metallurgical Silicon', J. EIectrochem. Soc., 125(4), 661-665 https://doi.org/10.1149/1.2131520
  4. Dietl, J. and Wohlschlager, M. (1981) FRG Patent Application 2933164
  5. Dietl, J. (1983) 'Hydrometallurgical Purification of Metallurgical Grad Silicon', Sol. Cells, 10(1), 145-154 https://doi.org/10.1016/0379-6787(83)90015-7
  6. Gribov, B.G. and Zinov'ev, K.V. (2003) 'Preparation of High-Purity Silicon for Solar Cells', Inorgnic Materials, 39(7), 653-662 https://doi.org/10.1023/A:1024553420534
  7. Hunt, L.P. (1984) 'Compositional Analysis of Silicon for Solar Cells', J. Electrochem. Soc., 131(8), 1891-1896 https://doi.org/10.1149/1.2115985
  8. Jaeger-Waldan, A. (2006) 'PV Status Report 2006 Research, Solar Cell Production and Market Implementation of Photovoltaics', EUR-22346EN, European Commission, DG Joint Research Center
  9. Kapur, V.K. and Chondary, U.V. (1983) US Patent 43388286
  10. Nakamura, N., Baba, H., Sakaguchi, Y., and Kato, Y. (2004) 'Boron removal in molten silicon by a steam-added plasma melting method', Materials Transactions, 45(3), 858-864 https://doi.org/10.2320/matertrans.45.858
  11. Pelosini, L., Parisi, A., and Pizzini, S. (1980) FRG Patent Application 2440913
  12. Rogal, M. (2007) 'SOLA ANNUAL 2007-Big Things in a Small Pack-age, Photon Consulting', Solar Verlag GmbH
  13. Yuge, N., Abe, M., Hanazawa, K., et al. (1999) 'Development of NEDO Melt-Purification Process of Solar-Grade Silicon', Technol. Digest Int. PVSEC, No. 22-A-1, pp. 115-118