DOI QR코드

DOI QR Code

Antioxidant Activity of Low Molecular Peptides Derived from Milk Protein

유단백질 가수분해에 의해 생성된 저분자 Peptides의 항산화 활성

  • Woo, Sung-Ho (Department of Animal Products and Food Science, Kangwon National University) ;
  • Jhoo, Jin-Woo (Department of Animal Products and Food Science, Kangwon National University) ;
  • Kim, Gur-Yoo (Department of Animal Products and Food Science, Kangwon National University)
  • 우성호 (강원대학교 동물생명과학대학 동물식품응용과학과) ;
  • 주진우 (강원대학교 동물생명과학대학 동물식품응용과학과) ;
  • 김거유 (강원대학교 동물생명과학대학 동물식품응용과학과)
  • Published : 2009.10.31

Abstract

The principal objective of the current study was to prepare low molecular weight peptides from milk proteins using enzymatic hydrolysis techniques, in an effort to assess the antioxidant activity of these peptides. The casein and whey proteins isolated from fresh milk were treated with several proteolytic enzymes, such as chymotrypsin, pepsin, and trypsin and the resulting low molecular weight peptides were collected by TCA precipitation. Their identity was confirmed by SDS-PAGE analysis. The hydrolysis experiments indicated that whey protein treated with chymotrypsin displayed the highest degree of protein hydrolysis. The antioxidant activity of milk protein hydrolysates was determined by measuring the ABTS-radical scavenging activity. The results of these experiments showed that hydrolysis of the milk protein was effective in increasing their antioxidant activities. Especially, the tryptic digested casein displayed the highest radical scavenging activity (80.7%). The hydrolyzed low molecular weight milk protein was isolated using an ultrafiltration membrane. The casein hydrolysate passed through a membrane with molecular weight cut-off (MWCO) of 3 kDa displayed the strongest antioxidant activity.

본 연구는 유단백질에 단백질 분해효소를 처리하여 가수분해 후 저분자 peptide를 ABTS법을 이용하여 항산화 활성을 측정하여 유단백질 유래 저분자 peptide의 항산화력을 측정하고자 하였다. Chymotrypsin 처리한 유청단백질의 가수분해도가 가장 높았으며, 유청단백질의 락트알부민 및 락토글로브린이 분해되어 분자량 20 kDa 이하의 저분자 단백질이 생성된 것을 전기영동을 통하여 확인하였다. 유단백질의 농도에 따른 항산화 활성을 측정한 결과, 카제인의 항산화 활성이 유청단백질보다 높게 나타났다. 유단백질을 효소에 의하여 가수분해 시 항산화 활성이 증가하였으며, 카제인 가수분해물이 유청단백질 가수분해물과 비교하여 항산화 활성이 더 높았으나, 가수분해도와 항산화 활성도의 관계는 일치하지 않았다. Trypsin에 의한 카제인 가수분해 물의 항산화 활성이 80.7%로 가장 높았다. 본 연구에서는 chymotrypsin과 trypsin에 의한 분자량 3 kDa의 카제인 분획물의 항산화 활성이 가장 우수 하였으며, 유청단백질을 trypsin으로 분해하였을 때 항산화 활성이 증가하였다.

Keywords

References

  1. Anne, P. (2006) Antioxidative peptides derived from milk proteins. Int. Dairy J. 16, 1306-1314 https://doi.org/10.1016/j.idairyj.2006.06.005
  2. Asbeck, B. S. V. (1990) Oxygen toxicity: Role of hydrogen peroxide and iron. Adv. Exp. Med. Biol. 264, 235-246 https://doi.org/10.1007/978-1-4684-5730-8_38
  3. Barrefors, P., Ekstrand, B., Fagersam, L., Larsson-Ranznikiewicz, M., Schaar, J., and Steffner, P. (1985) Fast protein liquid chromatography (FPLC) of bovine caseins. Milchwissenschaft 40, 257
  4. Benzie, I. F. F. and Strain, J. J. (1996) The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power": The FRAP assay. Anal. Biochem. 239, 70-76 https://doi.org/10.1006/abio.1996.0292
  5. Blois, M. S. (1958) Antioxidant determinations by the use of a stable free radical. Nature 181, 1199-1200 https://doi.org/10.1038/1811199a0
  6. Chen, J., Lindmark-Mansson, M., Gorton, L., and Akesson, B. (2003) Antioxidant capacity of bovine milk as assayed by spectrophotometric and amperometric methods. Int. Dairy J. 13, 927-935 https://doi.org/10.1016/S0958-6946(03)00139-0
  7. Fridovich I. (1975) Superoxide dismutase. Ann. Rev. Biochem. 44, 147-159 https://doi.org/10.1146/annurev.bi.44.070175.001051
  8. Gomez-Ruiz, J. A., Lopez-Exposito, I., Pihlanto, A., Ramos, M., and Recio I. (2008) Antioxidant activity of ovine casein hydrolysates: identification of active peptides by HPLC-MS/ MS. Eur. Food Res. Technol. 227, 1061-1067 https://doi.org/10.1007/s00217-008-0820-3
  9. Halliwell, B. (1990) How to characterize a biological antioxidant. Free Radic. Res. Commun. 9, 1-32 https://doi.org/10.3109/10715769009148569
  10. Halliwell, B. and Gutteridge J. M. C., eds. (1989) Free radicals in biology and medicine, 2nd ed., Clarendon Press. Oxford
  11. Kee, H. J. and Hong, Y. H. (1997) Separation and purification of $\alpha$-lactalbumin from whey protein concentrate. Kor. J. Dairy Sci. 19, 131-140
  12. Kunio, S., Hiroyuki, U., and Hirotomo, O. (2000) Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11, 128-131 https://doi.org/10.1016/S0955-2863(99)00083-2
  13. Laemmli, U. K. (1970) Cleavage of structural protein during the assembly of the head bacteriophage. Nature 227, 680 https://doi.org/10.1038/227680a0
  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275
  15. Miler, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., and Milner, A. (1993) A novel method for measuring antioxidant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Sci. 84, 407-412 https://doi.org/10.1042/cs0840407
  16. Morato, A. F., Carreira, R. L., Junqueira, R. G., and Silvestre. M. P. C. (2000) Optimization of casein hydrolysis for obtaining high contents of small peptides: Use of subtilisin and trypsin. J. Food Compos. Anal. 13, 843-857 https://doi.org/10.1006/jfca.2000.0912
  17. Pace, G. W. and Leaf, C. D. (1995) The role of oxidative stress in HIV disease. Free Radic. Biol. Med. 19, 523-528 https://doi.org/10.1016/0891-5849(95)00047-2
  18. Park, P. J., Jung, W. K., Choi, Y. I., Kim, S. K. (2000) Antioxidative effect of enzymatic protein hydrolysate from lecithin-free egg yolk. Kor. J. Life Sci. 10, 131-139
  19. Re, R., Pellegrini, N., Proteggente A., Pannala, A., Yang, M., and Rice-Evans, C. (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  20. Suetsuna, K. and Osajima, K. (1989) Blood pressure reduction and vasolilatory effects in vivo of peptides originating from sardine mucle, Nippon shokuin Kogyo Gakkaish 42, 47-54
  21. Yamaguch, M. (1989) New Food Industry 31, 18-21
  22. Yamaguchi, N., Naito, S., Yokoo, Y., and fujimaki, M. (1980) Application of protein hydrolyzate to biscuit as antioxidant. J. Japan. Soc. Food Sci. Technol. 27, 56-59 https://doi.org/10.3136/nskkk1962.27.56
  23. Yamaguchi, N., Yokoo, Y., and Fujimaki M. (1979) Antioxidative activities of protein hydrolysates. Nippon shokuin Kogyo Gakkaish 26, 65-70 https://doi.org/10.3136/nskkk1962.26.65

Cited by

  1. Antioxidant and angiotensin-converting enzyme inhibitory activity of yoghurt fortified with sodium calcium caseinate or whey protein concentrate vol.92, pp.6, 2012, https://doi.org/10.1007/s13594-012-0082-5
  2. Production of Set-type Yogurt Fortified with Peptides and γ-aminobutyric acid by Mixed Fermentation Using Bacillus subtilis and Lactococcus lactis vol.46, pp.2, 2014, https://doi.org/10.9721/KJFST.2014.46.2.165
  3. Characteristics of protein from red crab (Chionoecetes japonicus) shell by commercial proteases vol.45, pp.5, 2012, https://doi.org/10.4163/kjn.2012.45.5.429
  4. In vitro and in vivo antioxidant potential of milks, yoghurts, fermented milks and cheeses: a narrative review of evidence vol.31, pp.01, 2018, https://doi.org/10.1017/S0954422417000191