DOI QR코드

DOI QR Code

Optimisation of Calcium Alginate and Microbial Transglutaminase Systems to form a Porcine Myofibrillar Protein Gel

  • Hong, Geun-Pyo (Department of Animal Science and Biotechnology Research Institute, Chonnam National University) ;
  • Chin, Koo-Bok (Department of Animal Science and Biotechnology Research Institute, Chonnam National University)
  • Published : 2009.10.31

Abstract

The aim of this study was to model and optimize the calcium alginate (CA) and microbial transglutaminase (TG) systems to form a cold-set myofibrillar protein (MP) gel containing 0.1 M or 0.3 M NaCl using a response surface methodology. The gel strengths of cold-set and heat-induced MP gels, and cooking yields were measured. All measured parameters showed determination coefficients ($R^2$) above 0.7 without a lack-of-fit. The CA system had the best results with component ratios of 1.0:0.3:1.0 corresponding to sodium alginate, calcium carbonate and glucono-$\delta$-lactone, respectively, and was favourable at 0.1 M NaCl. In contrast, the TG system only had an effect on cold-set MP gelation at 0.3 M salt, and the optimal ratio of TG to sodium caseinate was 0.6:0.5. By combining the two systems at 0.3 M NaCl, an acceptable cold-set MP gel with an improved texture and high cooking yield could be formed. Therefore, these results indicated that the functionality of the cold-set MP gel could be enhanced by combining these two optimized gelling system.

Keywords

References

  1. Anema, S. G., Lauber, S., Lee, S. K., Henle, T., and Klostermeyer, H. (2005) Rheological properties of acid gels prepared from pressure- and transglutaminase-treated skim milk. Food Hydrocolloid 19, 879-887 https://doi.org/10.1016/j.foodhyd.2004.12.001
  2. Bergamini, C. M., Signorini, M., Barbato, R., Menabo, R., Lisa, F. D., Gorza, L., and Beninati, S. (1995) Transglutaminase-catalyzed polymerization of troponin in vitro. Biochem. Biophys. Res. Commun. 206, 201-206 https://doi.org/10.1006/bbrc.1995.1028
  3. Boles, J. A. and Shand, P. J. (1998) Effect of comminution method and raw binding system in restructured beef. Meat Sci. 49, 297-307 https://doi.org/10.1016/S0309-1740(97)00132-0
  4. Chin, K. B., Go, M. Y., and Xiong, Y. L. (2009) Konjac flour improved textural and water retention properties of transglutaminase- mediated, heat-induced porcine myofibrillar protein gel: Effect of salt level and transglutaminase incubation. Meat Sci. 81, 565-572 https://doi.org/10.1016/j.meatsci.2008.10.012
  5. Crehan, C. M., Hughes, E., Troy, D. J., and Buckley, D. J. (2000) Effects of fat level and maltodextrin on the functional properties of frankfurters formulated with 5, 12 and 30% fat. Meat Sci. 55, 463-469 https://doi.org/10.1016/S0309-1740(00)00006-1
  6. Draget, K. I., Steinsvag, K., Onsøyen, E., and Smidsrod, O. (1991) Na- and K-alginate; effect on ${Ca}^2^+$-gelation. Carbohydr. Polym. 35, 1-6 https://doi.org/10.1016/S0144-8617(97)00237-3
  7. Endres, J. G. and Monagle, C. W. (1987) Nonmeat protein additives. In Advances in meat research. (vol. 3) (pp. 331-350) Pearson, A. M. and Cutson, T. R. (eds.) Van Nostrand Reinhold Company: New York
  8. Gornall, A. G., Bardawill, C. Y., and David, M. M. (1949) Determination of serum proteins by means of the biuret reaction. J. Biol. Chem. 177, 751-756
  9. Ha, J. U., Woo, D. K., and Hwang, Y. M. (2000) Effect of carboxy methyl cellulose and methyl cellulose on the functional properties of pork heart alginate/calcium carbonate (AC) surimi. Korean J. Food Sci. Ani. Resour. 20, 199-206
  10. Hong, G. P., Park, S. H., Kim, J. Y., Ko, S. H., and Min, S. G. (2006) Effects of salt, glucono-δ-lactone and high pressure treatment on physico-chemical properties of restructured pork. Korean J. Food Sci. Ani. Resour. 26, 204-211
  11. Kilic, B. (2003) Effect of microbial transglutaminase and sodium caseinate on quality of chicken döner kebab, Meat Sci. 63, 417-421 https://doi.org/10.1016/S0309-1740(02)00102-X
  12. Kuraishi, C., Sakamoto, J., Yamazaki, K., Susa, Y., Kuhara, C., and Soeda, T. (1997) Production of restructured meat using microbial transglutaminase without salt or cooking. J. Food Sci. 62, 488-515 https://doi.org/10.1111/j.1365-2621.1997.tb04412.x
  13. Kütemeyer, C., Froeck, M., Werlein, H. D., and Watkinson, B. M. (2005) The influence of salts and temperature on enzymatic activity of microbial transglutaminase. Food Control. 16, 735-737 https://doi.org/10.1016/j.foodcont.2004.06.012
  14. Lee, W. C., Yusof, S., Hamid, N. S. A., and Baharin, B. S. (2006) Optimizing conditions for enzymatic clarification of banana juice using response surface methodology (RSM). J. Food Eng. 73, 55-63 https://doi.org/10.1016/j.jfoodeng.2005.01.005
  15. Monero, H. M., Carballo, J., and Borderías, A. J. (2008) Influence of alginate and microbial transglutaminase as binding ingredients on restructured fish muscle processed at low temperature. J. Sci. Food Agric. 88, 1529-1536 https://doi.org/10.1002/jsfa.3245
  16. Montero, P., Hurtado, J. L., and Pérez-Mateos, M. (2000) Microstructural behaviour and gelling characteristics of myosystem protein gels interacting with hydrocolloids. Food Hydrocolloid 14, 455-461 https://doi.org/10.1016/S0268-005X(00)00025-4
  17. Ngapo, T. M., Wilkinson, B. H. P., and Chong, R. (1996) 1,5- Glucono-δ-lactone-induced gelation of myofibrillar protein at chilled temperature. Meat Sci. 42, 3-13 https://doi.org/10.1016/0309-1740(95)00028-3
  18. Nielsen, G. S., Petersen, B. R., and Møller, A. J. (1995) Impact of salt, phosphate and temperature on the effect of a transglutaminase (F XIIIa) on the texture of restructured meat. Meat Sci. 41, 293-299 https://doi.org/10.1016/0309-1740(94)00002-O
  19. Park, J. W. (2000) Surimi and surimi seafood. Marcel Dekker: New York
  20. Renn, D. W. (1984) Marine algae and their role in biotechnology In Biotechnology in the marine sciences: proceedings of the first annual MIT sea grant lecture and seminar (pp. 191-206.) Sinskey, A. J., Pariser, E. R., and Colwell, R. R. (eds.), Willey: New York
  21. Sakamoto, H., Kumazawa, Y., and Motoki, M. (1994) Strength of protein gels prepared with microbial transglutaminase as related to reaction conditions. J. Food Sci. 59, 866-871 https://doi.org/10.1111/j.1365-2621.1994.tb08146.x
  22. Xiong, Y. L. (1993) A comparison of the rheological characteristics of different fractions of chicken myofibrillar proteins. J. Food Biochem. 16, 217-227

Cited by

  1. Application of Microbial Transglutaminase and Functional Ingredients for the Healthier Low-Fat/Salt Meat Products: A Review vol.30, pp.6, 2010, https://doi.org/10.5851/kosfa.2010.30.6.886
  2. Emulsion properties of pork myofibrillar protein in combination with microbial transglutaminase and calcium alginate under various pH conditions vol.90, pp.1, 2012, https://doi.org/10.1016/j.meatsci.2011.06.023
  3. Evaluation of Salt, Microbial Transglutaminase and Calcium Alginate on Protein Solubility and Gel Characteristics of Porcine Myofibrillar Protein vol.30, pp.5, 2010, https://doi.org/10.5851/kosfa.2010.30.5.746
  4. Evaluation of various salt levels and different dairy proteins in combination with microbial transglutaminase on the quality characteristics of restructured pork ham vol.46, pp.7, 2011, https://doi.org/10.1111/j.1365-2621.2011.02654.x
  5. Effects of microbial transglutaminase, fibrimex and alginate on physicochemical properties of cooked ground meat with reduced salt level vol.54, pp.2, 2017, https://doi.org/10.1007/s13197-016-2463-x
  6. Controlling Ingredients for Healthier Meat Products: Clean Label vol.4, pp.2, 2020, https://doi.org/10.22175/mmb.9520