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On Minimum Cost Multicast Routing Based on Cost
Prediction

Moonseong Kim, Matt W. Mutka, Dae-Jun Hwang, and Hyunseung Choo

Abstract: We have designed an algorithm for a problem in multi-
cast communication. The problem is to construct a multicast tree
while minimizing its cost, which is known to be NP-complete. Our
algorithm, which employs new concepts defined as potential cost
and spanning cost, generates a multicast tree more efficiently than
the well-known heuristic called Takahashi and Matsuyama (TM)
(1] in terms of tree cost. The time complexity of our algorithm is
O(kn?) for an n-node network with k& members in the multicast
group and is comparable to the TM. Our empirical performance
evaluation comparing the proposed algorithm with TM shows that
the enhancement is up to 1.25%~4.23% for each best case.

Index Terms: Minimal Steiner trees, minimum cost trees, multi-
cast communications, multicast routing algorithm, Takahashi and
Matsuyama (TM) algorithm.

I. INTRODUCTION

Multicasting refers to the transmission of data from one node
(source node) to a selected group of nodes (member nodes or
destination nodes) in communication networks. Multicast rout-
ing uses trees over the network topology for transmission to
minimize resource usage such as cost and bandwidth by sharing
links. Data generated by the source flows through the multicast
tree, traversing each tree edge exactly once. As a result, multi-
cast is very resource-efficient, and is well suited for multimedia
applications, such as video distribution.

The general problem of multicasting is well studied in the
area of computer networks and algorithmic network theory.
Varying levels of complexity may be presented in a multicast
problem depending upon the cost and/or criterion [2]. The min-
imal Steiner tree is very useful in representing solutions to mul-
ticast routing problems. The minimal Steiner tree, studied ex-
tensively in network theory, deals with minimizing the cost of
a multicast routing tree. It is a natural analogy of the general
multicast tree in computer networks.

The minimal Steiner tree problem is known to be NP-‘

complete, and has a vast literature of its own [2], [3]. Two inter-
esting polynomial-time algorithms called Takahashi and Mat-
suyama (TM) and KMB are proposed in [1] and [4], respec-
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tively. Also, an interesting polynomial-time algorithm for a fixed
parameter has been proposed in [5], wherein an overview of sev-
eral other approximation algorithms is also provided; distributed
algorithms based on minimal Steiner heuristics are provided in
[6].

In this paper, we propose a new heuristic algorithm that is
designed to solve the minimal Steiner tree problem. Extensive
simulations are carried out to compare the performance of our
proposed algorithm to that of the TM algorithm. Empirical eval-
uation has shown that the new algorithm generates a more effi-
cient multicast tree than the TM in terms of tree cost. Also the
time complexity of our algorithm is analyzed. The rest of this
paper is organized as follows. Section II explains the network
model for multicasting, and Section III presents details of the
proposed algorithm. Then Section IV evaluates our proposition
by employing a simulation model. Finally, Section V concludes
this paper.

II. PRELIMINARIES

A. Network Model for Multicasting

A network is modeled as a directed asymmetric simple graph
G = (V, E) with a node set V and an edge set E. Each edge
(i,7) € E has a link cost ¢;; > 0. We denote a path in G by
a sequence of nodes, uq,ug, - -, up, such that for each integer
k,1 <k < p, (ug,ur+1) € E. The path is from u; to u, and
its path cost is 22: Cujupi: - A minimum cost path from u; to
Uy, is a path from 4, to u, whose cost is minimal among all the
possible paths from wuq to u,. P(u1,u,) denotes the minimum
cost path from u; to u, and C(uq, u,) denotes the path cost of
P(u1,up). Let P*(W,n) denote a path whose cost is the lowest
of all path costs from each node in W to node n where W C V
and n ¢ W. Denote by C*(W, n) the path cost of P*(W, n).

Atree T = (VT,ET) of G is a connected subgraph of G
such that the removal of any edge in £7" will make it discon-
nected. The tree cost Cp(T') is > _(; ;e pr Cij- Given a network
topology G = (V, E), let D C V be a set of destination nodes,
and s € V\D be the source node. The minimum cost multi-
cast routing problem is that of finding a directed routing tree
T(VT, ET) that spans source node s and destination nodes in
D, satisfying the requirement to minimize Cp(T').

B. Related Work

The minimal Steiner tree is very effective for solving mul-
ticast routing problems. It is usually employed for all group
communications within a multicast group. In this subsection,
we give the well-known heuristic algorithms for the minimal
Steiner tree problem.
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Fig. 1. A given network and the TM algorithm: (a) A given network and
(b) a TM-based multicast tree.

Just as Prim’s and Kruskal’s algorithms are traditionally in-
troduced to solve the minimum spanning tree (MST) problem in
an algorithm textbook, the TM algorithm is also regarded as the
representative algorithm for the minimal Steiner tree problem.
The TM algorithm, introduced by Takahashi and Matsuyama
[1], is a shortest path based algorithm. For this reason, Low
et al. [7] introduce feasible TM (FTM) algorithm using the TM
algorithm in order to solve a group multicast routing (GMR)
problem. Here, the GMR problem is that of finding a set of rout-
ing trees, one for each member of the group. The heuristic TM
generates a multicast tree as follows:

Step 1: Start with subgraph 77 = (V1, E;) consisting of a sin-

gle source node s, say v, that is, set Vi = {v; } and £y = 0.

Step 2:
Foreachi =2,3,---,|D|do
Find a node in D\V;_1, say v;, such that
C*(Vier,vi) = min{C*(Vi_1,v;) | v; € D\V;1 }.
Construct T; = (V;, E;) by adding P*(V;_1, v;) to T;_1,
ie, Vi =V,_1 U{nodes € P*(V;_1,v;)} and
E,=FE,_ U {edges € P*(V;;l,vi)}.

Since P*(V;_1,v;) can be computed with time complexity
O(|V'|?) by Dijkstra’s algorithm, the TM algorithm requires at
most O(|D||V]?). It has been shown that the algorithm con-
structs a tree whose cost is within twice that of the optimal tree
[1]. Fig. 1(a) shows a given network topology with link costs
specified on each link. Fig. 1(b) represents the ultimate multi-
cast tree obtained by the TM. The tree cost generated by the TM
is 9.

The KMB algorithm by Kou, Markowsky, and Berman [4]
is a minimum spanning tree based algorithm. Doar and Leslie
[8] report that the KMB usually achieves 5% of the optimum
for a large number of realistic instances. The KMB algorithm
is illustrated in Fig. 2. To find a tree, the KMB starts with con-
structing the complete distance network G/ = (V', E’) induced
by D where, V' contains a source node and destination nodes
D only, and F’ is a set of links connecting nodes in V' to each
other. In the next step, a minimum spanning tree 7" of G’ is de-
termined. After that, a subgraph G is constructed by replacing
each link (i, j) of T" with its actual corresponding minimum cost
path from : to j in G. If there exist several minimum cost paths,
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Fig. 2. The KMB algorithm: (a) A given network, (b) the complete graph
and the minimal spanning tree, and (c) a KMB-based multicast tree.

an arbitrary one is chosen. The next step is to find the mini-
mum spanning tree 7”7 of G ;. In final step, all unnecessary nodes
and corresponding links are deleted from 7", Then, the resulting
tree is a KMB tree. Fig. 2(b) shows the complete graph from the
given network Fig. 2(a) and the minimal spanning tree. Fig. 2(c)
represents a KMB tree by replacing each edge in the spanning
tree by its corresponding shortest path in the given network. Ra-
manathan [5], in his comparison between parameterized TM and
KMB, has shown that the TM outperforms the KMB in terms of
the cost of the tree constructed. As shown in Fig. 2(c), the tree
cost is 11; and, this is worse than that of the TM.

Recently, Bang et al. [9] have introduced minimum cost mul-
ticast tree (MCMT) algorithm for the minimal Steiner tree prob-
lem. The MCMT algorithm improves the TM algorithm using
the modified Dijkstra’s shortest path (MDSP) algorithm to se-
lect all the minimum cost paths from a source to each destina-
tion. In addition, Kim et al. [10] have solved the GMR problem
using the MCMT algorithm like the FTM algorithm. The brief
description of the MCMT algorithm is as follows.

The subgraph G2, m, 18 constructed by merging all the shortest
paths from @ € V to each m; € D, where G, can be con-
structed using the MDSP algorithm. Thus, any path of GO‘ isa
minimum cost path; also, it is an acyclic graph. LetT'be a setof
nodes that constitute a tree that we want to define, and be empty
initially. Let G’ = (V', E’) be a subgraph of G with V/ C V
and E' C E, where G’ = G' U Gy, with G’ = § initially. In
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Fig. 3. The basic concept of the MCMT algorithm.

Fig. 3, the conceptual main idea of MCMT is as follows; select
(s, my) pair, called (s, M )min such that C(s,my) is the mini-
mum among all (s, my,) pairs with my, € D where, s is a source
of the multicast communication at the initial step. If G’ # 0,
find (v, m;)min pair with @ € V' and m; € D\V'. If a is
not in 7" that is empty initially, we select single minimum cost
path Py;s of G, that contains a node a.. Once P, via o is
selected, nodes of Py, are added to 7', and all other redundant
nodes and links are pruned from G7,,. When a is in T, then
G7,, is added to the set G'. This process is repeated until all
Gy, with o € V' and m; € D\V' are considered. At the end
of process, if there exist Gfm of which F,,;,, is not selected, a
single path from such G'fn is selected, and all redundant nodes
and links are removed. Then, the final subgraph, G’, is a tree,
and spans all destinations.

III. THE PROPOSED ALGORITHM

A. Overview

The T™M algorithm is similar to Prim’s algorithm in that they
are both centralized algorithms [2]. The newly proposed al-
gorithm assumes that the source node has complete informa-
tion regarding all network links to construct a multicast tree.
This requirement can be supported using one of many topology-
broadcast algorithms, which can be based on flooding (as is the
case in OSPF and IS-IS) or other techniques. One advantage of
the proposed algorithm is performance improvement with the
via-node. The via-node is a node in VA\V'T which will be in-
cluded in the current tree to create a cost-effective extension to
the remaining destination nodes. The proposed algorithm con-
sists of the following major steps.

Input: Network topology G = (V, E), source node s, set of

destination nodes D

Output:
Minimum cost multicast tree T= (VT, ET)
Step 1: Find all minimum cost paths from each node in V to
each node in D.
Step 2: Start from initial tree I” = (VT, ET), where VT =
{s}and ET = .
Step 3: Find a via-node v € V\VT and if found, connect v
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Fig. 4. Venn diagram-like representation. (a) Sets V, VT, and D\VT
at an intermediate state of generating a minimal Steiner tree, (b) the
potential cost of i € V\VT, PC(i) is the sum of C(i,do), C(%,d1},
and so on, (c) the potential cost of T = (VT, ET'), PCr is the sum
of C*(VT,dp), C*(VT,d1), and so on, and (d} the spanning cost of
i € VAVT, SC(i) is the sum of PC(i) and C*(VT, ).

to T through P*(VT,v).

Step4: If v ¢ D or v was not found at Step 3,
then find dpy;, € D\VT, such that C*(VT, dpin) =
min{C*(VT,d) | d € D\VT}. And connect dpi, to T
through P*(VT, dmin)-

Step 5: Repeat Steps 3 and 4 until VT contains all nodes in
D.

Step 6: Prune the leaves that are not the members of D.

Since Dijkstra’s algorithm can find the minimum cost paths
from one node to all nodes in G, in at most a O(]V'|?) time pe-
riod, we can apply the algorithm to find the minimum cost paths
from all nodes in V to one node in D. Thus, we can execute
Step 1 in at most O(|D||V'|?) time. Step 1 is for the preparation
and Step 2 is for the initialization of Steps 3, 4, and 5. Before
we can describe the proposed algorithm in detail, we need to de-
fine new concepts. They are used to select the via-node at each
loop where the minimum cost multicast tree spans a destination
node.

Definition 1:

Potential cost(PC): The potential cost of node ¢ € V\VT

is the sum of costs of each P(%, d), where eachd € D\VT.

DPC()= Y C(i,d),”i € V\VT (see Fig. 4(b))

deD\VT

And the potential cost of a tree T' = (VT, ET') is the sum of

costs of each P*(VT, d), where eachd € D\VT.

DPCr= Y C*"(VT,d)(seeFig. 4(c)).

deD\VT

Definition 2:

Spanning cost(SC): The spanning cost of node i € V\VT

is the sum of the cost of P*(VT, i) and the potential cost of

i
SC(i) = C*(VT,i) + PC(i), for eachi € VA\VT (see
Fig. 4(d)).
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Fig. 5. Venn diagram-like representation: (a) The role of x (i) and (b) the
situation after Step 3 for describing why pruning is required. Node v
is the currently selected via-node and node « is a node in P*(VT, v).

The potential cost of T' = (VT, ET'), PCr refers to the highest
foreseen cost of connecting the current tree 7" to the remaining
destination nodes through minimum cost paths. Similarly, the
potential cost of node i € VA\VT, PC(:) refers to the highest
foreseen cost that is needed for the node 7 to connect the remain-
ing destination nodes through minimum cost paths. Therefore,
the spanning cost of i € VAVT, SC(i) refers to the highest
foreseen cost needed for the algorithm to span the remaining
destination nodes in D\ VT, if the connection is via the node 1.
If SC(7) is smaller than PCry, the algorithm assumes that the
node 7 may be useful in minimizing the multicast tree cost. In
addition to the spanning cost concept, we have another measure
to select a via-node.

Let us suppose the condition (see Fig. 5(a)) that SC(ig) is
smaller than PCr but C(ig,dp) is larger than C*(V'T,dy),
where ip € VA\VT and dy € D\VT. Then, iq is useless for
now, the current spanning state which is to connect one destina-
tion node to T, because it can be the waste of cost to connect
to as a via-node. Finally, we present the following formulas to
select the via-node v.

f(v) = min{f(i) = SC(i)x(4) | i € VA\VT}

1 ,ifC(,d) < C*(VT,d)Vd € D\VT

where x (i) = { oo, otherwise.

If there are several ¢+ with minimum f(¢) values, select the one
with minimum C*(V'T, ).

Pruning, performed in the last step, is needed to complete
the algorithm. We describe the reason why pruning is required
through Fig. 5(b). There are potential costs of T, «, and v with
corresponding costs of minimum cost paths to each destination
nodes di, do, and d3. PC(v) and PC(«) are 12. It is certain
that SC(«) is smaller than SC(v), since C*(VT, @) is smaller
than C*(V'T, v) as shown in Fig. 5(b). But the node o cannot

be the via-node, because C'(«,ds) is larger than C*(V'T,d3)
and the characteristic function y(«) is set to co. So v is con-
nected to 7" as a via-node through P*(VT,v). By the way, o
happens to be the relay node of P*(V'T,v), and consequently it
is connected to T'. Now the algorithm finds d,;,, among dy, da,
and d3. Maybe d; is dpi, and may be connected to 1" through
P(w, dy) instead of P(v, dy). If the next loops of the algorithm
to connect ds and d3 would not use the v as the connection
point for P*(V'Tvia-node) or P*(VT, dyn) any more, then v
remains as a leaf, which is useless for multicast tree construc-
tion. Therefore, the algorithm prunes the leaves which are not
members of the multicast group during the last step of the tree
construction.

B. Pseudo-Code and Time-Complexity

In this subsection, we present the pseudo code of the newly
proposed algorithm, and analyze its worst-case execution time
by asymptotic upper bound, big-oh notation.

Heuristic for constructing the minimum cost multicast tree
Input: Network topology G = (V, E), source node s, set of

destination nodes D
Output: Minimum cost multicast tree T = (VT, ET))
01.Calculate C(g, k), "g € V, h € D.
02.Initiate T = (VT, ET), where VT = {s} and ET = {).
03.LOOP until D C VT
04. Caleulate PCr = Y C*(VT,d).

deD\VT
05. Caleulate PC(i) = Y C(i,d),"i € V\VT.
deD\VT
06. Calculate C*(VT,i), i € V\VT.
07. Calculate SC(i) = C*(VT,i) + PC(3), Vi ¢ V\VT.
08.  Find a via-node v € VA\VT such that
f(v) = min{f (i) = SC(i) x x(i) [ i € VAVT}
) 1 ,ifCE,d) < C*(VT,d)¥d € D\VT
x(1) = { oo, otherwise.
If there are several nodes with minimum f value,
select the one with minimum C*(V'T,v).
09. I SC(v) < PCr then,
10. Add P*(VT,v)to T.
ie, VT = VT U { nodes in P*(VT,v)},
ET = ET U{edges in P*(VT,v)}.
11. Calculate C*(V'T, i), Vi € VAVT.
12. Ifv¢ Dorv ¢ VT then,
13. Find a node dy;, such that C* (VT dpin)
=min{C*(VT,d)| d€ D\VT}.
14. Add P*(VT,din) to T.
ie., VI'=VTU{nodesin P*(VT, dpin)},
ET = ET U{ edges in P*(VT,dwin)}
15.Prune T(VT, ET), if necessary.
The time-complexity of the proposed algorithm is evaluated as
follows. Step 1 is executed in a O(|D||V|?) time period based
on Dijkstra’s algorithm. Step 2 can be completed in a O(|V|?)
time period if the data structure for T’ = (VT, ET) is the adja-
cency matrix. The loop from Step 3 to 14 is repeated | D| times,
since one destination node is connected to 7' by one loop. Steps
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Fig. 6. (a) Sample network topology, (b} Tras, Cr(Tra) = 13, and (¢) T = (VT, ET) after the first loop. The via-node is 0 and dy;;, is 2. (d) T
after the second loop. The via-node is 4 and dy,;,, is 6. (e) T after the third loop. The via-node is 7 and dmn is 9. (f) T after the final loop. The
via-node is not found and dyiy is 8. This is the Thew and Or (Thew) = 12.

Table 1. C(g,h) and P(g,h) foreachg € V, h € D.

geV || Plg,2) | Clg,2) || P(g,6) | C(g,6) || P(9,8) | C(9,8) ] P(9,9 [ C(9,9.
0 0,2 2 04,6 3 04,78 5 0,4,7.9 4
1 1.2 4 1,6 5 10478 | 8 10479 7
2 2 0 2,046 5 23,8 5 20479 6
3 32 3 3746 | 4 3.8 2 3,7.9 3
4 402 4 46 1 47,8 3 47,9 2
5 502 4 56 2 56478 6 5,69 4
6 6,4,0,2 5 6 0 64,78 4 6,9 2
7 7,402 5 74,6 2 7.8 2 7.9 1
8 83,2 5 8746 | 4 8 0 89 2
9 97402 6 9,6 2 9,8 2 9 0

4 and 5 are executed in O(|D||V|) time using the result from
Step 1. Each of Steps 6 and 11 is executed in O(|V|?) time
using Dijkstra’s algorithm. Step 7 is completed in O(|V|) time
using the result from Steps 5 and 6. Since the time-complexity
for computing x of one node in V\VT is O(| D|), using the re-
sult from Step 1 with SC already calculated from Step 7, the
time complexity of Step 8 is O(|D||V|). Each of Steps 10 and
14 can be executed in O(|V']) time, since the maximum hop of a
minimum cost path is |V| — 1. As a result, the time complexity
between Step 3 and Step 11 is O(|D|)(O(|D||V)+O(| D}|V|)+
O(V*) + O(V]) + O(ID||V]) + O(V]) + O(|V[?)) =
O(IDNO(IVI?) = O(|D||V|?). Step 13 is executed in O(|D)|)

time using the result from Step 11 or 6. Step 15 could be done in
O(|V|?) time. Hence the total time-complexity of our entire al-
gorithm is O(|D||V'|?) based on the dominating Steps 6 and 11
in the loop. However, since several Steps require O(|D|?|V|)
or O(|D||V|?), the total execution time may be increasing than
the execution time of TM. Thus, we show the actual execution
times during computer simulation in Section IV.

C. A Case Study

In this subsection, we illustrate the operational mechanism
of the proposed algorithm. Fig. 6(a) shows a sample network
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Table 2. P*(VT,i), C*(VT,s), PC(i), SC(i), and f(3) at the first loop of the algorithm with VT = {1} and ET = @, PC = 24.

1€ VA\VT 0 2 3 4 5 6 7 8 9
P*(VT,1) 1,0 1,2 1,0,3 1,04 1,0,5 1,6 1,04,7 } 1,04,7,8 | 1,04,7,9
C*VT,i) | 3 ) 7 5 5 5 6 g 7
PC(i) 14 16 12 10 16 11 10 11 10
SC) 17 20 19 15 21 16 16 9 17
0] 17 00 19 00 00 00 00 00 00

Table 3. P*(VT,), C*(VT,i), PC(i), SC(3), and f(i) at the second loop of the algerithm with VT = {0, 1,2}, PCr = 12.

1e VAVT 3 4 5 6 7 8 9
P*(VT,q) 2,3 0,4 0,5 0,4,6 04,7 | 04,78 | 04,79
CVT,i) | 3 2 2 3 3 5 4
PC(i) 9 6 12 6 5 6 4
5C0) 2 g 1 9 8 11 g
Fi0) 00 8 00 9 8 00 8

topology with link cost specified on the middle of each link,
source node 1 and a set of destination nodes {2,6,8,9}. For
simplicity, the link cost is symmetric. Fig. 6(b) represents the
minimum cost multicast tree 7 generated by the TM algo-
rithm, whose tree cost is 13. The TM has spanned each des-
tination node sequentially using P(1,2), P(1,6), P(6,9), and
P(9, 8), respectively.

Fig. 6(c), 6(d), 6(e), and 6(f) describe the way that the pro-
posed algorithm spans each destination node using Tables 1,
2, 3, 4, and 5. First of all, the proposed algorithm calculates
C(g,h) for each g € V, h € D, as shown in Table 1. There
are several pieces of information needed to select the via-node
during the first loop of the algorithm in Table 2. The algo-
rithm selects the node 0 as a via-node whose f is both mini-
mal (f(0) = 17) and less than PCr = 24. It then connects to
T through P(1,0). dyin is node 2 and connects to T through
P(0,2). At this step the current tree is illustrated in Fig. 6(c).
Tables 3, 4, and 5 match up with Fig. 6(d), 6(e), and 6(f), respec-
tively. There are nodes 4, 7, and 9 with the same value of f in Ta-
ble 3. In this case, our algorithm selects the node with minimum
C*(VT,i), so node 4 is selected as a via-node in the second
loop of the algorithm as illustrated in Fig. 6(d). The via-node 7
of the third loop of the algorithm follows in the same manner
(Table 4 and Fig. 6(e)). Since T' = (VT', ET) in Fig. 6(f) has
no leaf which is not the destination node, the pruning is not ex-
ecuted. Therefore, it is the minimum cost multicast tree Thew
generated by the proposed algorithm.

IV. PERFORMANCE EVALUATION
A. Random Network Topology for the Simulation

Random graphs of the acknowledged model represent dif-
ferent kinds of networks, communication networks in partic-
ular. There are many algorithms and programs, but the speed
is usually the main goal, not the statistical properties. In the
last decade the problem was discussed, for example, by Wax-
man [11], Doar [12], [13], Toh [14], Zegura, Calvert, and Bhat-
tacharjee [15], Calvert, Doar, and Doar [16], Kumar, Ragha-
van, Rajagopalan, Sivakumar, Tomkins, and Upfal [17]. They

Table 4. P*(VT, 1), C*(VT,i), PC(i), SC(4), and f(3) at the third
loop of the algorithm with VT = {0, 1,2, 4,6}, PCp = 5.

[eVWT ] 3 | 51 7] 8 ] 9
P=(VT,i) || 473] 05 | 47 | 478 | 4,79
C*(VT,1) 3 2 1 3 2
PC() 5 10 | 3 2 2
SC0) § |12 4| 5 | 4
f(@ 00 00 4 5 4

Table 5. P*(VT,:), C*(VT,i), PC(i), SC(t), and f(3) at the final loop
of the algorithm with VT = {0,1,2,4,6,7,9}, PCr = 2.

i€ VAVT

P*(VT7 i)

C*(VT,1)
PC()
SC(i)

f(1)

84>wa3w
eSS
8 | o] of || oo

Fig. 7. Random graph generation by Rodionov and Choo.

presented fast algorithms that allow the generation of random
graphs with different properties, in particular, these are similar
to real communication networks. However, none have discussed
the stochastic properties of generated random graphs.
Rodionov et al. [18] formulated two major demands for the
generators of random graph: attainability of all graphs with re-
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Fig. 8. Normalized surcharges versus the number of destinations for network with 50, 100, and 200 nodes, with respect to the proposed algorithm:
(a) |V]: 50, Pe: 0.3, (b) |V]: 100, P.: 0.5, (c) |V]: 100, P.: 0.7, and (d) |V|: 200, P.: 0.3.

quired properties and uniformity of distribution. If the second
demand is sometimes difficult to prove theoretically, it is pos-
sible to check the distribution statistically. The generation of
random real network topologies, as shown in Fig. 7, is proposed
by Rodionov et al., for the evaluation and the simulation results
based on the network topology generated. The method uses pa-
rameter P, the probability of link existence between any node
pair; and, we use the method.

B. Simulation Results

We now describe some numerical results with which we com-
pare the performance of the proposed scheme. The proposed al-
gorithm is implemented in C. First of all, in order to compare
with the TM and MCMT, we generate 40 different real random
networks for each given size 50, 100, and 200, respectively. We
randomly select a source node. And the destination nodes are
chosen uniformly from the set of nodes in the network topology
(performed 40 times; excluding the nodes already selected for
the destination). We estimate 1,600 times (40 x 40 = 1,600)
for each V|, where the probabilities of link existence P, are 0.3,
0.5, and 0.7. Since it is impractical to find the optimal solution
for large graphs, we use the normalized surcharge (NS), intro-
duced in [5], with respect to the proposed algorithm defined as

follows:

Cr(Tw) — Cr(Thew)
Cr(Tnew)

NS:an(

X 100) .

In the above equation, Cr(T}r) is the cost of tree based on
algorithm H, here the TM or MCMT. As indicated in Fig. 8, it
can be easily noticed that the proposed algorithm outperforms
other algorithms.

In order to evaluate the performance of the proposed algo-
rithm, we compare it with the only the TM algorithm in terms
of the tree cost. The following is the simulation routine for the
performance evaluation.

for P. = 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8
for |V| = 50, 100, 150, 200, 250, 300, 350, 400
do Generate random graph 40 times
for |D| = 5%, 10%, 15%, ---,90%, 95% of |V|
do Generate a source node, and destination nodes
Run the TM algorithm and get C'r(T\p)
Run the proposed algorithm and get C7(Thew)
Compare C7(T\p) and Cr(Thew)

For the performance comparison, we define the average value &
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Fig. 10. A comparison on the execution times.
as follows:
Cr (T — Cp (1
§= an( 7(T1m) 7 (Thew) X 100) .
Cr(TTm)
The plot in Fig. 9 contains the simulation results. As it
shows, when the edge probability P. and the number of nodes

in the network becomes larger, the proposed algorithm performs
better. If |D| converges to |V, the TM algorithm works like

Prim’s algorithm. ¢ converges to zero, as | D| increases to 95%
of [V|. We can say that the proposed algorithm also performs
like Prim’s algorithm, when |D| converges to [V|. As shown
in Fig. 9(d), the enhancement is up to 1.25%~4.23% for each
best case. Although at first glance these values seem quite small,
they carry much importance. Since the performance of the TM
is close to the optimal value as mentioned above, the evaluation
values of the proposed algorithm are extremely valuable.

In Section III-B, we analyzed that the time complexity of the
proposed algorithm is O(|D||V'|?), and that of TM is the same.
However, as shown in Fig. 10, the actual execution time of the
proposed scheme is larger than that of the TM. On the other
hand, all of the graphed trends are the same. As mentioned pre-
viously, the reason is that the hidden constant value is high in
O(ID||V|?) of the proposed algorithm. We will continue re-
search to reduce the hidden constant in the future. If so, the
GMR solution will also be easily derived using the proposed
algorithm.

V. CONCLUSION

We considered the transmission of a message from a source
to a set of destinations with minimum cost over random net-
work topologies. The proposed heuristic algorithm is based on
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a greedy approach. We presented simulation results to illustrate
the relative performance of the proposed algorithm. One inter-
esting and significant result from simulation is that if the global
information is known at the source and the size of a multicast
group is appropriate, the proposed algorithm outperforms the
TM, which is the most straightforward and efficient multicast-
ing method known so far.
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