Evaluation of partial safety factors of Hudson formula for Tetrapod armor units constructed in Korea

국내에서 시공된 Tetrapod 피복재에 대한 Hudson 공식의 부분안전계수 산정

  • Kim, Seung-Woo (Department of Civil and Environmental Engineering, Seoul National University) ;
  • Suh, Kyung-Duck (Department of Civil and Environmental Engineering, Seoul National University)
  • 김승우 (서울대학교 건설환경공학부) ;
  • 서경덕 (서울대학교 건설환경공학부)
  • Published : 2009.10.31

Abstract

Tetrapod has been used as the armor blocks of most rubble mound breakwaters constructed in Korea. The Hudson formula has been widely used in the design of breakwater armor blocks in Korea. In the present study, we calculate the load and resistance partial safety factors of the Hudson formula for Tetrapod armors. The partial safety factors were calculated for the typical breakwater cross-sections of 12 trade harbors and 8 coastal harbors in Korea. The mean and standard deviation of them were also calculated. The mean values were compared with the partial safety factors of US Army (2006). The load and resistance factors are slightly smaller and larger, respectively, than the US Army values. However, the overall safety factors obtained by multiplying the load and resistance factors are close to the US Army values. The result of the present study could be used as the basic data to propose authorized partial safety factors in the future.

국내 항만의 경사제 피복재는 대부분 Tetrapod이다. Hudson 공식은 국내 항만의 방파제 피복블록의 설계에 가장 많이 사용되는 식이다. 본 연구에서는 Tetrapod에 대한 Hudson 공식의 하중과 저항의 부분안전계수를 산정하였다. 국내 무역항 12곳과 연안항 8곳의 대표단면을 채택하여 하중과 저항의 부분안전계수의 평균과 표준 편차를 산정하였다. 또한 부분안전계수의 평균을 US Army(2006)에서 제안한 부분안전계수와 비교하였다. US Army의 결과와 비교해 볼 때, 하중의 부분안전계수는 비교적 작게 산정되었고 저항의 부분안전계수는 약간 크게 산정되었다. 하지만, 하중과 저항의 부분안전계수를 곱한 전체안전계수는 US Army의 결과와 비슷하다. 연구 결과는 향후 국내 항만의 방파제 피복블록에 대한 최종적인 부분안전계수를 제안하는 기초 자료로 사용될 수 있을 것이다.

Keywords

References

  1. 김승우, 서경덕 (2008). 파고와 파형경사의 상관성을 고려한 신뢰성 해석 및 부분안전계수 산정, 한국해안.해양공학회논문집, 20(3), 300-309
  2. 김승우, 서경덕, 이철응, 박동헌 (2009). 국내 항만의 방파제 피복블록의 신뢰성 해석, 한국해안·해양공학회논문집, 21(1), 15-29
  3. 이철응 (2007). 피복재의 부분안전계수 산정, 한국해안해양공학회지, 19(4), 336-344
  4. 이철응 (2008). 피복재의 신뢰성 해석과 부분안전계수 산정, 제2회 항만구조물 신뢰성 설계법 기술교육 위크샵, 항만구조물 신뢰성 설계 연구단, 도서출판 씨아이알, 145-183
  5. 해양수산부 (2005). 항만 및 어항 설계기준, 상권
  6. 해양수산부 (2007). 항만시설물 안정성 평가 및 보수보강 방안 수립 1차년도 보고서, 세광종합기술단 및 혜인ENC
  7. 해운항만청 (1992). 항만구조물도집, 제 1, 2권
  8. Burcharth, H.F. (1991). Introduction of partial coefficient in the design of rubble mound breakwaters, Proc. Coastal Structures Breakwaters, Institution of Civil Engineers, London, 543-565
  9. Burcharth, H.F. (1992). Reliability evaluation of a structure at sea, Proc. 23rd. Int. Conf. on Coastal Engineering, ASCE, NewYork, 511-545
  10. Burcharth, H.F. and Sorenson, J.D. (2000). The PIANC safety factor system for breakwaters, Proc. Coastal Structures '99, Spain, 1125-1144
  11. Carver (1983). Stability of stone- and dolos-armored rubble mound breakwater trunks subjected to breaking waves with no overtopping, technical report CERC-83-5, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS
  12. Hudson, R.Y. (1959). Laboratory investigation of rubble mound breakwaters, J. Waterway and Harbors Division, ASCE, 85(WW3), 93-121
  13. JPHA (2007). Japan Port and Harbor Association, Technical Standards and Commentaries of Port and Harbor Facilities in Japan (in Japanese)
  14. Melby, J.A. and Mlakar, P.R. (1997). Reliability assessment of breakwaters, technical report CHL-97-9, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS
  15. PIANC (1992). Analysis of rubble mound breakwaters, Rep. of Working Group No. 1 of PTC II, Belgium
  16. Rackwitz, R. (1976). Practical probabilistic approach to design, Bulletin 112, Comite European du Beton, Paris, France
  17. European Committee for Standardisation (1991). Eurocode 1 for Actions on Structures, European Committee for Standardisation
  18. European Committee for Standardisation (1992). Eurocode 2 for Design of Concrete Structures, European Committee for Standardisation
  19. US Army Corps of Engineers (1984). Shore Protection Manual, U.S. Army Corps of Engineers
  20. US Army Corps of Engineers(2006). Coastal Engineering Manual, U.S. Army Corps of Engineers, Washington, D.C. (in 6 volumes)
  21. van der Meer, J.W. (1987). Stability of breakwater armor layers design formulae, Coastal Engrg., 11, 219-239 https://doi.org/10.1016/0378-3839(87)90013-5
  22. van der Meer, J.W. (1988a). Deterministic and probabilistic design of breakwater armor layers, J. Waterway, Port, Coastal and Ocean Engrg., ASCE, 114(1), 66-80 https://doi.org/10.1061/(ASCE)0733-950X(1988)114:1(66)
  23. van der Meer, J.W. (1988b). Rock slopes and gravel beaches under wave attack, Ph.D. diss., Delft University of Technology, The Netherlands. (Also Delft Hydraulic Publication No. 396)
  24. Yoshioka, T. and Nagao, T. (2005). Level-1 reliability-based design method for gravity-type special breakwaters, Research report of NILIM