References
- 조희진, 송혜향 (2004). 변수가 관측치보다 많은 자료에서 표식 유전자를 찾기 위한 방법, 가톨릭대학교 의과대학 의학통계학과 석사학위 논문집
- Albers, W., Bickel, P. J. and van Zwet, W. R. (1976). Asymptotic expansions for the power of distribution free tests in the one-sample problem, Annals of Statistic, 4, 108-156 https://doi.org/10.1214/aos/1176343350
- Alon, U., Barkai, N., Notterman, D. A., Gish, K., Ybarra, S., Mack, D. and Levine, A. J. (1999). Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays, Proceedings of the National Academy of Sciences of the United States of America, 96, 6745-6750 https://doi.org/10.1073/pnas.96.12.6745
- Chernoff, H. and Savage, I. R. (1958). Asymptotic normality and efficiency of certain nonparametric test statistics, Annals of Mathematical Statistics, 29, 972-994 https://doi.org/10.1214/aoms/1177706436
- Efron, B., Tibshirani, R., Storey, J. D. and Tusher, V. (2001). Empirical Bayes analysis of a microarray experiment, Journal of American Statistical Association, 96, 1151-2001 https://doi.org/10.1198/016214501753382129
- Fisher, R. A. (1935, 1966). The Design of Experiments (1st ed., 8th ed.). Oliver& Boyd, Edinburgh
- Gao, X. (2006). Construction of null statistics in permutation-based multiple testing for multi-factorial microarray experiments, Bioinformatics, 22, 1486-1494 https://doi.org/10.1093/bioinformatics/btl109
- Hoeffding, W. (1952). The large-sample power of tests based on permutations of observations, Annals of Mathematical Statistics, 23, 169-192 https://doi.org/10.1214/aoms/1177729436
- Jain, N., Thatte, J., Braciale, T., Ley, K., O'Connel, M. and Lee, J. K. (2003). Local-pooled-error test for identifying differentially expressed genes with a small number of replicated microarrays, Bioinformatics, 15, 1945-1951
- Lee, J.K. (2001). OAnalysis issues for gene expression array data, Clinical Chemistry, 47, 1350-1352
- Lehmann, E. L. and Stein, C. (1949). On the theory of some non-parametric hypotheses, The Annals of Mathematical Statistics, 20, 28-45 https://doi.org/10.1214/aoms/1177730089
- Pan, W. (2003a). On the use of permutation in and the performance of a class of nonparametric methods to detect differential gene expression, Biometrics, 19, 1333-1340
- Pan, W., Lin, J. and Le, C. (2003b). A mixture model approach to detecting differentially expressed genes with microarray data, Functional Integrative Genomics, 3, 117-124 https://doi.org/10.1016/0888-7543(88)90141-3
- Pitman, E. J. G. (1937). Significance tests which may be applied to samples from any populations, Journal of the Royal Statistical Society, 4, 119-130
- Smyth, G. K., Yang, Y. H. and Speed, T. (2003). Statistical issues in cDNA microarray data analysis, Methods in Molecular Biology, 224, 111-136
- Spino, C. and Pagano, M. (1991). Efficient calculation of the permutation distribution of trimmed means, Journal of the American Statistical Association, 86, 729-737 https://doi.org/10.2307/2290405
- Tusher, V. G., Tibshirani, R. and Chu, G. (2001). Significance analysis of microarrays applied to the ionizing radiation response, Proceedings of the National Academy of Sciences of the United States of America, 98, 5116-5121 https://doi.org/10.1073/pnas.091062498
- Welch, W. J. (1990). Construction of permutation Tests, Journal of the American Statistical Association, 85, 693-698 https://doi.org/10.2307/2290004
- Xie, Y., Pan, W. and Khodursky, A. B. (2005). A note on using permutation-based false discovery rate estiimates to compare different analysis methods for microarray data, Bioinformatics, 21, 4280-4288 https://doi.org/10.1093/bioinformatics/bti685
- Zhao, Y. and Pan, W. (2003). Modified nonparametric approaches to detecting differentially expressed genes in replicated microarray experiments, Bioinformatics, 19, 1046-1054 https://doi.org/10.1093/bioinformatics/btf879