초록
도시가스 수요량은 강한 계절성을 보이는 자료이다. 따라서 도시가스 수요량을 예측하기 위한 모형 구축에서 가장 중요한 요인은 계절성이다. 또한, 실제 도시가스 수요량에는 추가적 인 여러 요인들에 의하여 영향을 받을 수 있는데, 온도, 요일효과, 명절효과, 유효일 수, 수용가수 등이 영향 요인들이다. 본 연구에서는 이와 같은 요인들이 도시가스 수요량에 미치는 영향력의 정도를 파악하고 효율적으로 향후 도시가스 수요량 예측을 위한 시계열 모형을 구축하였다. 적용된 모형은 오차항이 자기상관을 따르는 시계열 회귀모형을 이용하였으며 실제 자료를 이용한 예측결과 매우 우수한 예측력을 보였다.
The city gas demand data has strong seasonality. Thus, the seasonality factor is the majority for the development of forecasting model for city gas supply amounts. Also, real city gas demand amounts can be affected by other factors; weekday effect, holiday effect, the number of validity day, and the number of consumptions. We examined the degree of effective power of these factors for the city gas demand and proposed a time-series model for efficient forecasting of city gas supply. We utilize the liner regression model with autoregressive regression errors and we have excellent forecasting results using real data.