DOI QR코드

DOI QR Code

도시가스 수요량 예측을 위한 시계열 모형 개발

A Development of Time-Series Model for City Gas Demand Forecasting

  • 발행 : 2009.10.31

초록

도시가스 수요량은 강한 계절성을 보이는 자료이다. 따라서 도시가스 수요량을 예측하기 위한 모형 구축에서 가장 중요한 요인은 계절성이다. 또한, 실제 도시가스 수요량에는 추가적 인 여러 요인들에 의하여 영향을 받을 수 있는데, 온도, 요일효과, 명절효과, 유효일 수, 수용가수 등이 영향 요인들이다. 본 연구에서는 이와 같은 요인들이 도시가스 수요량에 미치는 영향력의 정도를 파악하고 효율적으로 향후 도시가스 수요량 예측을 위한 시계열 모형을 구축하였다. 적용된 모형은 오차항이 자기상관을 따르는 시계열 회귀모형을 이용하였으며 실제 자료를 이용한 예측결과 매우 우수한 예측력을 보였다.

The city gas demand data has strong seasonality. Thus, the seasonality factor is the majority for the development of forecasting model for city gas supply amounts. Also, real city gas demand amounts can be affected by other factors; weekday effect, holiday effect, the number of validity day, and the number of consumptions. We examined the degree of effective power of these factors for the city gas demand and proposed a time-series model for efficient forecasting of city gas supply. We utilize the liner regression model with autoregressive regression errors and we have excellent forecasting results using real data.

키워드

참고문헌

  1. 김희영, 박유성 (2007). 제조업을 중심으로 한 한국 산업별 GDP 예측모형연구, Journal of the Korean Data Analysis Society, 9, 1229-2354
  2. 나인강, 유지철 (2000). <에너지 수요 분석 및 전망 -2001 년 수요전망과 정책 이슈->, 에너지 경제 연구원, 서울
  3. 박광수, 김태헌, 최도영, 박호정, 정창봉, 김남일, 김영덕, 김선정 (2004). <중단기 에너지수급 전망 연구(II)>, 에너지 경제 연구원, 서울
  4. 박유성, 김기환 (2002). <시계열 자료분석 I>, 자유아카데미, 서울
  5. 송명숙, 최보승, 김성용, 라울머레티 (2008). 계절조정 방법을 이용한 지적업무량 예측, Journal of the Korean Data Analysis Society, 10, 1579-1590
  6. 양준모, 유상희 (2008). 전력수요관리를 감안한 합리적 전력수요예측, Journal of the Korean Data Analysis Society, 10, 2755-2765
  7. 유병철 (1996). <전력수요의 가격탄력성과 요금조정방안>, 에너지 경제 연구원, 서울
  8. 이충열, 강윤영 (2007). 배기량별 승용차 등급 변화를 고려한 승용차 에너지 수요 예측, Journal of the Korean Data Analysis Society, 9, 1179-1195
  9. Bass, F. M. (1969). A new product growth model for consumer durables, Management Science, 15, 215-227 https://doi.org/10.1287/mnsc.15.5.215
  10. Engle, R. F. and Granger, C. W. J. (1987). Co-integration and error correlation: Representation, estimation, and testing, Econometrica, 55, 251-276 https://doi.org/10.2307/1913236
  11. Findley, D. F., Mansell, B. C., Bell, W. R., Otto, M. C. and Chen, B. C. (1998). New capabilities and methods of the X-12-ARIMA seasonal adjustment program (with discussion), Biometrika, 61, 485-492 https://doi.org/10.1093/biomet/61.3.485
  12. Pesaran, H., Smith, R. and Akiyama, T. (1998). Energy Demand in Asian Developing Economies, A World Bank Study

피인용 문헌

  1. Estimating Bathroom Water-uses based on Time Series Regression vol.19, pp.8, 2014, https://doi.org/10.9708/jksci.2014.19.8.019
  2. Forecasting Daily Demand of Domestic City Gas with Selective Sampling vol.16, pp.10, 2015, https://doi.org/10.5762/KAIS.2015.16.10.6860