초록
본 논문에서는 보험 상품의 잉여금(surplus)을 확률적으로 모형화한 후, 잉여금의 파산 확률과 이의 근사 공식들을 소개한다. 잉여금은 일정한 율(rate)로 들어오는 프리미엄(premium)에 의해 증가한다. 보험금 청구(claim)는 포아송 과정(Poisson process)을 따라 발생하고 보험금 청구가 있을 때마다 잉여금은 임의의 양(random amount) 만큼 줄어든다. 잉여금이 0이하로 떨어지면 파산(ruin)이 발생한다고 한다. 이와 같은 리스크(risk) 모형에서 파산 확률의 이론적 공식은 잘 알려져 있으나, 공식에 n차 공률(convolution)과 무한 합(infinite sum)이 포함되어 있어 실질적인 계산은 불가능하다. 본 논문에서는 잘 알려진 De Vylder의 근사 공식과 지수적인 근사 공식(exponential approximation)을 소개하고, 이들을 일반화한 새로운 근사 공식을 제안한다. 기존 근사 공식과의 수치적 비교를 통해 새로 제안된 근사 공식의 우월성을 보인다.
In this paper, a continuous-time risk process in an insurance business is considered, where the premium rate is constant and the claim process forms a compound Poisson process. We say that a ruin occurs if the surplus of the risk process becomes negative. It is practically impossible to calculate analytically the ruin probability because the theoretical formula of the ruin probability contains the recursive convolutions and infinite sum. Hence, many authors have suggested approximation formulas of the ruin probability. We introduce a new approximation formula of the ruin probability which extends the well-known De Vylder's and exponential approximation formulas. We compare our approximation formula with the existing ones and show numerically that our approximation formula gives closer values to the true ruin probability in most cases.