DOI QR코드

DOI QR Code

보험 상품 파산 확률 근사 방법의 개선 연구

An Improvement of the Approximation of the Ruin Probability in a Risk Process

  • 이혜선 (숙명여자대학교 통계학과) ;
  • 최승경 (숙명여자대학교 통계학과) ;
  • 이의용 (숙명여자대학교 통계학과)
  • Lee, Hye-Sun (Department of Statistics, Sookmyung Women's University) ;
  • Choi, Seung-Kyoung (Department of Statistics, Sookmyung Women's University) ;
  • Lee, Eui-Yong (Department of Statistics, Sookmyung Women's University)
  • 발행 : 2009.10.31

초록

본 논문에서는 보험 상품의 잉여금(surplus)을 확률적으로 모형화한 후, 잉여금의 파산 확률과 이의 근사 공식들을 소개한다. 잉여금은 일정한 율(rate)로 들어오는 프리미엄(premium)에 의해 증가한다. 보험금 청구(claim)는 포아송 과정(Poisson process)을 따라 발생하고 보험금 청구가 있을 때마다 잉여금은 임의의 양(random amount) 만큼 줄어든다. 잉여금이 0이하로 떨어지면 파산(ruin)이 발생한다고 한다. 이와 같은 리스크(risk) 모형에서 파산 확률의 이론적 공식은 잘 알려져 있으나, 공식에 n차 공률(convolution)과 무한 합(infinite sum)이 포함되어 있어 실질적인 계산은 불가능하다. 본 논문에서는 잘 알려진 De Vylder의 근사 공식과 지수적인 근사 공식(exponential approximation)을 소개하고, 이들을 일반화한 새로운 근사 공식을 제안한다. 기존 근사 공식과의 수치적 비교를 통해 새로 제안된 근사 공식의 우월성을 보인다.

In this paper, a continuous-time risk process in an insurance business is considered, where the premium rate is constant and the claim process forms a compound Poisson process. We say that a ruin occurs if the surplus of the risk process becomes negative. It is practically impossible to calculate analytically the ruin probability because the theoretical formula of the ruin probability contains the recursive convolutions and infinite sum. Hence, many authors have suggested approximation formulas of the ruin probability. We introduce a new approximation formula of the ruin probability which extends the well-known De Vylder's and exponential approximation formulas. We compare our approximation formula with the existing ones and show numerically that our approximation formula gives closer values to the true ruin probability in most cases.

키워드

참고문헌

  1. Beekman, J. (1969). A ruin function approximation, Transactions of the Society of Actuaries, 21, 41-48
  2. Cramer, H. (1930). On the Mathematical Theory of Risk, Skandia Jubilee Volume, Stockholm. In: Harald Cramer Collected Works, Vol. I, Springer, Berlin, 601-678
  3. De Vylder, F. E. (1978). A practical solution to the problem of ultimate ruin probability, Scandinavian Actuarial Journal, 114-119
  4. Grandell, J. (1977). A class of approximation of ruin probabilities, Scandinavian Actuarial Journal (Suppl.), 38-52
  5. Grandell, J. (1991). Aspects of Risk Theory, Springer, New York
  6. Grandel!. J. (2000). Simple approximations of ruin probabilities, Insurance: Mathematics and Economics, 26, 157-173 https://doi.org/10.1016/S0167-6687(99)00050-5
  7. Hadwiger, H. (1940). Uber die wahrscheinlichkeit des ruins bei einer grossen zahl von geschaften, Arkiv fur Mathematische Wirtschaft-und Sozialforschung, 6, 131-135
  8. Klugman, S. A., Panjer, H. H. and Willmot, G. E. (2004). Loss Models: From Data to Decisions, 2nd Edition, John wiley & Sons
  9. Lundberg, O. (1964). On Random Processes and their Application to Sickness and Accident Statistics, 1st Edition, Almqvist & Wiksell, Uppsala
  10. Tijms, H. (1994). Stochastic Models-An Algorithmic Approach, Wiley, Chichester

피인용 문헌

  1. New approximations of the ruin probability in a continuous time surplus process vol.25, pp.1, 2014, https://doi.org/10.7465/jkdi.2014.25.1.1
  2. Ruin Probability in a Compound Poisson Risk Model with a Two-Step Premium Rule vol.18, pp.4, 2011, https://doi.org/10.5351/CKSS.2011.18.4.433