Inhibitory Effects of an Eicosanoid Biosynthesis Inhibitor, Benzylideneacetone, Against Two Spotted Spider Mite, Tetranychus urticae, and a Bacterial Wilt-causing Pathogen, Ralstonia solanacearum

아이코사노이드 생합성 저해제인 벤질리덴아세톤의 점박이응애(Tetranychus urticae)와 세균성풋마름병 세균(Ralstonia solanacearum)에 대한 억제효과

  • Park, Ye-Sol (School of Bioresource Sciences, Andong National Sciences) ;
  • Kim, Min-Je (School of Bioresource Sciences, Andong National Sciences) ;
  • Lee, Geon-Hyung (Agrcultural Environmental Research Center, NABIS Co., Ltd.) ;
  • Chun, Won-Soo (School of Bioresource Sciences, Andong National Sciences) ;
  • Yi, Young-Keun (School of Bioresource Sciences, Andong National Sciences) ;
  • Kim, Yong-Gyun (School of Bioresource Sciences, Andong National Sciences)
  • 박예슬 (안동대학교 생명자원과학부) ;
  • 김민제 (안동대학교 생명자원과학부) ;
  • 이건형 ((주)나비스) ;
  • 천원수 (안동대학교 생명자원과학부) ;
  • 이영근 (안동대학교 생명자원과학부) ;
  • 김용균 (안동대학교 생명자원과학부)
  • Published : 2009.09.30

Abstract

A monoterpenoid compound, benzylideneacetone (BZA), is a metabolite of an entomopathogenic bacterium, Xenorhabdus nematophila. Its primary biological activity is an inhibitor of phospholipase $A_2$, which catalyzes the committed step of biosynthesis of various eicosanoids that are critically important to mediate insect immune responses. When BZA was applied to two-spotted spider mite, Tetranychus urticae, it exhibited a dose-dependent mortality in leaf-disc assay. Subsequently BZA was tested against T. urticae infesting apples in a field orchard, in which it showed a significant control efficacy, which was not statistically different with that of a commercial acaricide. BZA also had significant antibacterial activities against three species of plant pathogenic bacteria when it was added to the bacterial cultures, in which it showed the highest inhibitory activity against a bacterial wilt-causing pathogen, Ralstonia solanacearum. The bacterial pathogen caused significant disease symptom to young potato plants. However, BZA significantly suppressed the disease occurrence. This study suggests that BZA can be used to develop a novel crop protectant to control mite and bacterial pathogen.

모노터핀의 일종인 벤질리덴아세톤은 곤충병원세균인 Xenorhabdus nematophila의 대사산물이다. 이 물질의 주요 생물활성은 인지질 분해효소인 phospholipase $A_2$를 억제하는 것이다. 이 효소는 아이코사노이드 생합성 반응의 최초 결정단계를 촉매하는 것으로 이 아이코사노이드는 곤충의 면역 반응을 중개하는데 중요하다. 본 연구는 벤질리덴아세톤을 점박이응애(Tetranychus urticae)에 처리하였고, 이 물질의 농도 증가에 따라 응애의 치사율이 높아지는 실내 생물검정 결과를 얻었다. 이에 따라 야외 사과원에 피해를 주는 점박이응애 집단에 처리한 결과 현재 상용화하고 있는 살비제와 비교하여 같은 수준의 살비효과를 나타냈다. 벤질리덴아세톤은 또한 3종의 식물병원세균 배양액에 첨가한 경우 이들 세균의 성장을 억제하였다. 특히 세균성풋마름병을 일으키는 Ralstonia solanacearum에 대해서 현격한 억제효과가 나타났다. 이 세균 균주는 어린 감자묘에 병원성을 나타냈으며, 벤질리덴아세톤은 이 병 발생을 억제시켰다. 이 연구결과는 벤질리덴아세톤이 응애와 식물병 세균을 방제하는 데 새로운 작물보호제로서 개발될 수 있다고 제시한다.

Keywords

References

  1. Guidot, A., M. Elbaz, S. Carrere, M.I. Siri, M.J. Pianzzola, P. Prior and C. Boucher (2009) Specifie genes from the potato brown rot strains of Ralstonia solanacearnm and their potential use for strain detection. Phytopathol. 99:1105-1112 https://doi.org/10.1094/PHYTO-99-9-1105
  2. Forst, S.B., N. Dows, N. Boernare and E. Stackebrandt (1997) Xenorhabdus and Heterorhabdus spp: bugs that kill bugs. Annu. Rev. Microbiol. 51:47-72 https://doi.org/10.1146/annurev.micro.51.1.47
  3. Ji, D., Y. Yi, G.H. Kang, Y.H. Choi, P. Kim, N.I. Baek and Y. Kim (2004) Identification of an antibacterial compound, benzylideneacetone, from Xenorhabdus nematophila against major plant-pathogenic bacteria. FEMS Microbiol. Lett. 239:241-248 https://doi.org/10.1016/j.femsle.2004.08.041
  4. Kanost, M.R., H. Jiang and X. Yu (2004) Innate immune responses of a lepidopterdIl insects, Manduca sexta. Immunol. Rev. 198:97-105 https://doi.org/10.1111/j.0105-2896.2004.0121.x
  5. Kaya, H.K. and R. Gaugler (1993) Entomopathogenic nematodes. Annu. Rev. Entomol. 38:181-206 https://doi.org/10.1146/annurev.en.38.010193.001145
  6. Kwon, S. and Y. Kim (2008) Benzylideneacetone, an immunosuppressant, enhances virulence of Bacillus thuringiensis against beet armyworm (Lepidoptera: Noctuidae). J. Econ. Entomol. 101:36-41 https://doi.org/10.1603/0022-0493(2008)101[36:BAIEVO]2.0.CO;2
  7. Park, Y. and Y. Kim (2000) Eicosanoids rescue Spodoptera e.xigua infected with Xenorhabdus nematophilus, the symbiotic bacteria to the entomopathogenic nematode, Steinernema carpocapsae. J. Insect Physiol. 46:1469-1476 https://doi.org/10.1016/S0022-1910(00)00071-8
  8. Park, Y., Y. Kim and Y. Yi (1999) Identification and characterization of a symbiotic bacterium. associated with Steinerenema carpocapsae in Korea. J. Asia Pac. Entomol. 2: 105-111 https://doi.org/10.1016/S1226-8615(08)60038-2
  9. Raymond, M. (1985) Presentation d'un programme d'analyse Iog-probit pour rnicro-ordinateur. Cah. ORS-TOM. Ser. Ent. Med. et Parasitol. 22:117-121
  10. Shrestha, S. and Y. Kim (2008) Eieosanoids mediate prophenoloxidase release from oenocytoids in the beet armyworm Spodoptera exigua. Insect Biochem. Mol. Physiol. 38:99-112 https://doi.org/10.1016/j.ibmb.2007.09.013
  11. Shrestha, S. and Y. Kim (2009) Various eicosanoids modulate the cellular and humoral immune responses of the beet armyworm, Spodoptera exigua. Biosci. Biotechnol. Biochem. 73:(인쇄중)
  12. Stanley, D. (2006) Prostaglandins and other eicosanoids in insects:biological significance. Annu. Rev. Entomol. 51 :25-44 https://doi.org/10.1146/annurev.ento.51.110104.151021
  13. Stanley, D.W. and J.S. Miller (2006) Eicosanoid actions in insect cellular immune functions. Entomol. Exp. Appl. 119:1-13 https://doi.org/10.1111/j.1570-7458.2006.00406.x
  14. Webster, J.M., G. Chen and J. Li (1998) Parasitic worms: an ally in the war against the superbugs. Parasitol.Today 14: 161-163 https://doi.org/10.1016/S0169-4758(97)01220-9
  15. 김지영, 이영근,송유한 (1998) 경북지역 시설원예작물의 병해발생상황. 한식병지 14:41-45
  16. 이영근 (2005) 식물세균병학 사전. 안동대학교 농업과학기술연구소. 205pp
  17. 이영근, 임영구 (2007) 2005-2006년도 경북지역 담배 병 발생상황. 식물병연구 13:1-5