Development of Practical Lumped Contaminant Modeling Approach for Fate and Transport of Complex Organic Mixtures

복잡한 혼합 유기오염물의 거동 예측을 위한 실용적인 오염물 집략화 모델링 기법 개발

  • Joo, Jin-Chul (Korea Institute of Construction Technology, Construction Environment Research Division) ;
  • Song, Ho-Myeon (Korea Institute of Construction Technology, Construction Environment Research Division)
  • 주진철 (한국건설기술연구원 건설환경연구실) ;
  • 송호면 (한국건설기술연구원 건설환경연구실)
  • Published : 2009.10.31

Abstract

Both feasibility and accuracy of lumped approach to group 12 organic compounds in mixtures into a fewer number of pseudocompounds in sorption processes were evaluated using mixtures containing organic compounds with various physicochemical properties and low-surface-area mineral sorbents. The lumped approach for sorption to simulated mineral sorbents was developed by cluster analysis from statistics. Using the lumped approach, the sorption estimated from both reduced number of pseudocompounds and their sorption parameters (i.e., $K_f$, n) can approximate sorption behavior of complex organic mixtures. Additionally, the pseudocompounds for various mixtures to different types of low-surface-area mineral sorbents can be estimated a priori from the physicochemical properties of organic compound (i.e., ${\gamma_w}^{sat}$). Therefore, the lumped approach may help to simplify the complex fate and transport model of organic contaminant mixtures, reduce experimental efforts, and yet provide results that are statistically identical for practical purposes. Further research is warranted to enhance the accuracy of lumped approach using the multiple regression analysis considering the H-bonding capacity, site concentrations, functional groups for mineral sorbents.

다양한 물리화학적 특성을 지닌 12개의 유기오염물이 저표면적의 무기물 지반 수착제로 수착 시 12개의 유기오염물을 적은 수의 pseudocompound로 집략화하는 접근법(lumped approach)의 타당성과 정확성을 평가하였다. 집략화 접근법은 복잡한 혼합 유기오염물의 수착 거동을 근거로 통계적인 처리방법인 집략분석(cluster analysis)을 통해 개발되었다. 집략화 접근법을 이용해 수용액상에서 복잡한 혼합 유기오염물이 친수성 무기물로 수착 시 감소된 수의 집략화된 오염물(pseudocompound)과 집략화된 오염물의 수착 매개변수($K_f$, n)를 이용하여 복잡한 혼합 유기오염물의 수착을 설명할 수 있었다. 또한, 실험을 수행하지 않고(a priori) 복잡한 혼합 유기오염물 내 각 유기오염물의 특성(${\gamma_w}^{sat}$)을 근거로 pseudocompound를 예측할 수 있었다. 따라서 집략화 접근법은 복잡한 혼합 유기오염물의 수착거동을 단순화하여 반응관련 매개변수 산출에 필요한 시간과 비용을 감소시켜주고 통계적으로 정확성이 동일한 범위 내의 실용적인 수착 결과를 제공해 줄 수 있다. 향후 더 많은 반응 인자소결합크기, 수착제 내 반응 지점 수 및 반응성 그룹 등)를 고려한 다중회귀분석(multiple regression analysis)을 통해 집략화 접근법(lumped approach)의 정확도를 높일 필요가 있다고 판단된다.

Keywords

References

  1. Allen-King, R.M., Grathwohl, P., and Ball, W.P., 2002, New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks, Advances in Water Resources, 25(8-12), 985-1016 https://doi.org/10.1016/S0309-1708(02)00045-3
  2. Anderberg, M.R, 1973, Cluster analysis for applications, Academic, New York, NY
  3. Degaetano, A.T., 1996, Delineation of mesoscale climate zones in the northeastern united statesusing a novel approach to cluster analysis, Journal of Climate, 9(8), 1765-1782 https://doi.org/10.1175/1520-0442(1996)009<1765:DOMCZI>2.0.CO;2
  4. Feng, X., Simpson, A.J., and Simpson, M.J., 2006, Investigating the role of mineral-bound humic acid in phenanthrene sorption, Environmental Science and Technology, 40(10), 3260-3266 https://doi.org/10.1021/es0521472
  5. Hair, J.F. Jr., Anderson, R.F., Tatham, R.L., and Black, W.C., 1998, Multivariate data analysis 5th Ed., Pearson Education, Inc., Delhi, India, p. 469-518
  6. Hur, J. and Schlautman, M.A., 2004, Effects of mineral surfaces on pyrene partitioning to well-characterized humic substances, Journal of Environmental Quality, 33(5), 1733-1742 https://doi.org/10.2134/jeq2004.1733
  7. Joo, J.C., Shackelford, C.D., Reardon, K.F., 2008a, Sorption of nonpolar neutral organic compounds to humic acid-coated sand: Contributions of organic and mineral component, Chemosphere, 70(7), 1290-1297 https://doi.org/10.1016/j.chemosphere.2007.07.052
  8. Joo, J.C., Shackelford, C.D., Reardon, K.F., 2008b, Association of humic acid with metal (hydr)oxide-coated sands at solidwater interfaces, Journal of Colloid and Interface Science, 317(2),424-433 https://doi.org/10.1016/j.jcis.2007.09.061
  9. Karickhoff, S.W, 1984, Organic pollutant sorption in aquatic systems, Journal of Hydraulic Engineering, 110(6), 707-735 https://doi.org/10.1061/(ASCE)0733-9429(1984)110:6(707)
  10. Luthy, R.G, Aiken, G.R., Brusseau, M.L., Cunningham, S.D., Gschwend, P.M., Pignatello, J.J., Reinhard, M., Traina, S.J., Weber, W.J., Jr., and Westall, J.C., 1997, Sequestration of hydrophobic organic contaminants by geosorbents, Environmental Science and Technology, 31(12),3341-3347 https://doi.org/10.1021/es970512m
  11. Milligan, G. W. and Cooper, M.C., 1985, An examination of procedures for determining the number of clusters in a data set, Psychometrika, 50(2), 159-179 https://doi.org/10.1007/BF02294245
  12. Nguyen, T.H. and Ball, W.P., 2006, Absorption and adsorption of hydrophobic organic contaminants to diesel and hexane soot, Environmental Science and Technology, 40(9), 2958-2964 https://doi.org/10.1021/es052121a
  13. Pignatello, J.J., Lu, Y., LeBoeuf, E.J., Huang, W., Song, J., and Xing, B, 2006, Nonlinear and competitive sorption of apolar compounds in black carbon-free natural organic materials, Journal of Environmental Quality, 35(4), 1049-1059 https://doi.org/10.2134/jeq2005.0362
  14. Su, Y.-H., Zhu, Y.-G, Sheng, G, and Chiou, C.T., 2006, Linear adsorption of nonionic organic compounds from water onto hydrophilic minerals: silica and alumina, Environmental Science and Technology, 40(22), 6949-6954 https://doi.org/10.1021/es0609809
  15. Unal, Y., Kindap, T., and Karaca, M., 2003, Redefining the climate zones of turkey using cluster analysis, International Journal of Climatology, 23(9), 1045-1055 https://doi.org/10.1002/joc.910
  16. Wang, K. and Xing, B., 2005, Structural and sorption characteristics of adsorbed humic acid on clay minerals, Journal of Environmental Quality, 34(1), 342-349 https://doi.org/10.2134/jeq2005.0342
  17. Ward, J.H., 1963, Hierarchical grouping to optimize an objec-tive fuction, Journal of the American Statistical Association, 58(301),236-244 https://doi.org/10.2307/2282967
  18. Weber, W.J., Jr., McGinley, P.M., and Katz, L.E., 1992, A distributed reactivity model for sorption by soils and sediments. 1. Conceptual basis and equilibrium assessments, Environmental Science and Technology, 26(10), 1995-1962 https://doi.org/10.1021/es00034a012
  19. Xing, B., Pignatello, J.J., Gigliotti, B., 1996, Competitive sorption between atrazine and other organic compounds in soils and model sorbents, Environmental Science and Technology, 30(8), 2432-2440 https://doi.org/10.1021/es950350z