DOI QR코드

DOI QR Code

포화 사질토 지반에서의 동적 p-y 중추곡선

Dynamic p-y Backbone Curves for a Pile in Saturated Sand

  • 양의규 (서울대학교 공학연구소) ;
  • 유민택 (서울대학교 건설환경공학부) ;
  • 김현욱 (유신코퍼레이션) ;
  • 김명모 (서울대학교 건설환경공학부)
  • 발행 : 2009.11.30

초록

본 연구에서는 조밀한 포화 사질토 지반과 느슨한 포화 사질토 지반에 근입된 모형말뚝을 대상으로 다양한 말뚝휨 강성과 입력 가속도 진폭, 그리고 입력 가속도 진동수 조건에서 1g 진동대 실험을 수행하였다. 그 결과로, 조밀한 포화 사질토 지반조건에 대해, 각 실험 p-y 곡선 상 최대 지반 반력이 나타나는 꼭지점들을 연결하여 등가정적해석에 적용할 수 있는 동적 p-y 중추곡선을 쌍곡선 함수로 나타내었으며, 중추곡선을 쌍곡선 함수로 나타내는데 필요한 초기 기울기($k_{ini}$)와 극한 저항력($p_u$)을 결정하기 위한 경험식을 마찰각과 구속압의 함수로 제안하였다. 제안한 동적 p-y 중추곡선의 적용성을 기존 문헌에 발표된 원심모형실험 결과와 비교하여 검증하였으며, 실제 설계에 적용되고 있는 기존의 p-y 곡선들과도 비교, 분석하였다. 또한 느슨한 포화 사질토 지반조건에서, 진동 중 발생하는 과잉간극수압에 따라 지반 저항이 감소하는 정도를 나타내는 동적 지반 저항 감소 계수($S_F$)를 제안하였다.

In this study, a series of 1 g shaking table model pile tests were carried out in saturated dense and loose sand to evaluate dynamic p-y curves for various conditions of flexural stiffness of a pile shaft, acceleration frequency and acceleration amplitude for input loads. Dynamic p-y backbone curve which can be applied to pseudo static analysis for saturated dense sand was proposed as a hyperbolic function by connecting the peak points of the experimental p-y curves, which corresponded to maximum soil resistances. In order to represent the backbone curve numerically, empirical equations were developed for the initial stiffness ($k_{ini}$) and the ultimate capacity ($p_u$) of soils as a function of a friction angle and a confining stress. The applicability of a p-y backbone curve was evaluated based on the centrifuge test results of other researchers cited in literature, and this suggested backbone curve was also compared with the currently available p-y curves. And also, the scaling factor ($S_F$) to account for the degradation of soil resistance according to the excess pore pressure was developed from the results of saturated loose sand.

키워드

참고문헌

  1. American Petroleum Institute (API) (1987), Recommended practice for planning, Designing and constructing fixed offshore platforms, API Recommendation Practice 2A (RP 2A), 17th edition
  2. Boulanger, R.W., Curras, C.J., Kutter, B.L., Wilson, D.W., and Abghari, A. (1999), "Seismic soil-pile-structure interaction experiments and analyses", Journal of Geotechnical and Geoenvironmental Engineering, Vol.l25, No.9, pp.750-759 https://doi.org/10.1061/(ASCE)1090-0241(1999)125:9(750)
  3. Dou, H., and Byrne, P.M. (1996), "Dynamic response of single piles and soil-pile interaction", Canadian Geotechnical Journal, Vol.33, No.1, pp.80-96 https://doi.org/10.1139/t96-025
  4. Feng, S., and Wang, J. (2006), "Research on lateral resistance of pile in saturated sand under shake loading", Proceedings of the GeoShanghai Conference, Shanghai, China, Geotechnical Special Publication, No. 150, pp.490-497
  5. Gibson, A.D. (1996), Physical scale modeling of geotechnical structures at one-g., Ph.D. thesis., California Institute of Technology Pasadena, California., pp.1.l-2.26
  6. Han, J.T., Kim, M.M., Kim, S.R., and Hwang, J.I. (2007), "Evaluation of the Dynamic Characteristics of Soil-pile System in Liquefiable Ground by Shaking Table Tests", Proceedings of 4th International Conference on Earthquake Geotechnical Engineering, Greece, Thessaloniki, No. 1340
  7. Iai, S. (1989), "Similitude for shaking table tests on soil-structurefluid model in 19 gravitational field", Soils and Foundations, Vol.29, No.1, pp.105-118 https://doi.org/10.3208/sandf1972.29.105
  8. Iai, S. and Sugano, T. (1999), "Soil-structure interaction studies through shaking table tests", Proc. of the Second International Conference on Earthquake Geotechnical Engineering, P.S. Seco e Pinto ed., Lisbon, Portugal, Vol.1, pp.365-370
  9. Janbu, N. (1963), 'Soil compressibility as determined by oedometer and triaxial test', Proceedings of the European Conference on Soil Mechanics and Foundations Engineering, Wiesbaden, Germany, Vol.1, pp.19-25
  10. Japan Road Association (JRA) (2002), Specification for highway bridges., Part V. Seismic design, Tokyo
  11. Kim, B.T., Kim, N.K., Lee, W.J., and Kim, Y.S. (2004), "Experi-mental load-transfer curves of laterally loaded piles in Nak-Dong river sand", Journal of Geotechnical and Geoenvironmental Engineering, Vol.130, No.4, pp.416-425 https://doi.org/10.1061/(ASCE)1090-0241(2004)130:4(416)
  12. Kondner, R.L. (1963), "Hyperbolic stress-strain response: Cohesive soils", J. Soil Mechanics and Foundation Div., ASCE, Vol.89, No.1, pp.115-144
  13. Liu, L. and Dobry, R. (1995), "Effect of liquefaction on lateral response of piles by centrifuge model tests", National Center for Earthquake Engineering Research (NCEER) Bulletin, Vol.9, No.1, pp.7-11
  14. National Cooperative Highway Research Program. (NCHRP) (2001), Static and Dynamic Lateral Loading of Pile Groups, NCHRP Report 461, Transportation Research Board - National Research Council., pp.13-21
  15. Reese, L.C., Cox, W.R. and Koop, F.D. (1974), "Analysis of laterally loaded piles in sand", Proceedings of the VI Annual Offshore Technology Conference, Houston, pp.473-485
  16. Scott, R.F. (1980), Analysis of centrifuge pile tests; simulation of pile-driving, Report for the American Petroleum Institute OSAPR Project 13. California Institute of Technology, Pasadena, Calif.
  17. Ting, J.M., Kauffman, C.R., and Lovicsek, M. (1987), "Centrifuge static and dynamic lateral pile behavior", Canadian Geotechnical Journal, Vol.24, pp.198-207 https://doi.org/10.1139/t87-025
  18. Wilson, D. (1998), Soil-Pile-Superstrncture Interaction in liquefying sand and soft clay, Ph. D. Dissertation, Univ. of California, Davis, USA., pp.125-156